MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcan2 Structured version   Visualization version   GIF version

Theorem xpcan2 5729
Description: Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.)
Assertion
Ref Expression
xpcan2 (𝐶 ≠ ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem xpcan2
StepHypRef Expression
1 xp11 5727 . . 3 ((𝐴 ≠ ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ (𝐴 = 𝐵𝐶 = 𝐶)))
2 eqid 2760 . . . 4 𝐶 = 𝐶
32biantru 527 . . 3 (𝐴 = 𝐵 ↔ (𝐴 = 𝐵𝐶 = 𝐶))
41, 3syl6bbr 278 . 2 ((𝐴 ≠ ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
5 nne 2936 . . 3 𝐴 ≠ ∅ ↔ 𝐴 = ∅)
6 simpl 474 . . . . 5 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → 𝐴 = ∅)
7 xpeq1 5280 . . . . . . . . . 10 (𝐴 = ∅ → (𝐴 × 𝐶) = (∅ × 𝐶))
8 0xp 5356 . . . . . . . . . 10 (∅ × 𝐶) = ∅
97, 8syl6eq 2810 . . . . . . . . 9 (𝐴 = ∅ → (𝐴 × 𝐶) = ∅)
109eqeq1d 2762 . . . . . . . 8 (𝐴 = ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ ∅ = (𝐵 × 𝐶)))
11 eqcom 2767 . . . . . . . 8 (∅ = (𝐵 × 𝐶) ↔ (𝐵 × 𝐶) = ∅)
1210, 11syl6bb 276 . . . . . . 7 (𝐴 = ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ (𝐵 × 𝐶) = ∅))
1312adantr 472 . . . . . 6 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ (𝐵 × 𝐶) = ∅))
14 df-ne 2933 . . . . . . . 8 (𝐶 ≠ ∅ ↔ ¬ 𝐶 = ∅)
15 xpeq0 5712 . . . . . . . . 9 ((𝐵 × 𝐶) = ∅ ↔ (𝐵 = ∅ ∨ 𝐶 = ∅))
16 orel2 397 . . . . . . . . 9 𝐶 = ∅ → ((𝐵 = ∅ ∨ 𝐶 = ∅) → 𝐵 = ∅))
1715, 16syl5bi 232 . . . . . . . 8 𝐶 = ∅ → ((𝐵 × 𝐶) = ∅ → 𝐵 = ∅))
1814, 17sylbi 207 . . . . . . 7 (𝐶 ≠ ∅ → ((𝐵 × 𝐶) = ∅ → 𝐵 = ∅))
1918adantl 473 . . . . . 6 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐵 × 𝐶) = ∅ → 𝐵 = ∅))
2013, 19sylbid 230 . . . . 5 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) → 𝐵 = ∅))
21 eqtr3 2781 . . . . 5 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐴 = 𝐵)
226, 20, 21syl6an 569 . . . 4 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) → 𝐴 = 𝐵))
23 xpeq1 5280 . . . 4 (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
2422, 23impbid1 215 . . 3 ((𝐴 = ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
255, 24sylanb 490 . 2 ((¬ 𝐴 ≠ ∅ ∧ 𝐶 ≠ ∅) → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
264, 25pm2.61ian 866 1 (𝐶 ≠ ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wne 2932  c0 4058   × cxp 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-xp 5272  df-rel 5273  df-cnv 5274  df-dm 5276  df-rn 5277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator