![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xp2cda | Structured version Visualization version GIF version |
Description: Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
xp2cda | ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 2𝑜) = (𝐴 +𝑐 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdaval 9176 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 +𝑐 𝐴) = ((𝐴 × {∅}) ∪ (𝐴 × {1𝑜}))) | |
2 | 1 | anidms 680 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 +𝑐 𝐴) = ((𝐴 × {∅}) ∪ (𝐴 × {1𝑜}))) |
3 | df2o3 7734 | . . . . 5 ⊢ 2𝑜 = {∅, 1𝑜} | |
4 | df-pr 4316 | . . . . 5 ⊢ {∅, 1𝑜} = ({∅} ∪ {1𝑜}) | |
5 | 3, 4 | eqtri 2774 | . . . 4 ⊢ 2𝑜 = ({∅} ∪ {1𝑜}) |
6 | 5 | xpeq2i 5285 | . . 3 ⊢ (𝐴 × 2𝑜) = (𝐴 × ({∅} ∪ {1𝑜})) |
7 | xpundi 5320 | . . 3 ⊢ (𝐴 × ({∅} ∪ {1𝑜})) = ((𝐴 × {∅}) ∪ (𝐴 × {1𝑜})) | |
8 | 6, 7 | eqtri 2774 | . 2 ⊢ (𝐴 × 2𝑜) = ((𝐴 × {∅}) ∪ (𝐴 × {1𝑜})) |
9 | 2, 8 | syl6reqr 2805 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × 2𝑜) = (𝐴 +𝑐 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1624 ∈ wcel 2131 ∪ cun 3705 ∅c0 4050 {csn 4313 {cpr 4315 × cxp 5256 (class class class)co 6805 1𝑜c1o 7714 2𝑜c2o 7715 +𝑐 ccda 9173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-suc 5882 df-iota 6004 df-fun 6043 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-1o 7721 df-2o 7722 df-cda 9174 |
This theorem is referenced by: pwcda1 9200 unctb 9211 infcdaabs 9212 ackbij1lem5 9230 fin56 9399 |
Copyright terms: Public domain | W3C validator |