MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xp1en Structured version   Visualization version   GIF version

Theorem xp1en 8200
Description: One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp1en (𝐴𝑉 → (𝐴 × 1𝑜) ≈ 𝐴)

Proof of Theorem xp1en
StepHypRef Expression
1 df1o2 7724 . . 3 1𝑜 = {∅}
21xpeq2i 5275 . 2 (𝐴 × 1𝑜) = (𝐴 × {∅})
3 0ex 4920 . . 3 ∅ ∈ V
4 xpsneng 8199 . . 3 ((𝐴𝑉 ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
53, 4mpan2 706 . 2 (𝐴𝑉 → (𝐴 × {∅}) ≈ 𝐴)
62, 5syl5eqbr 4818 1 (𝐴𝑉 → (𝐴 × 1𝑜) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2143  Vcvv 3348  c0 4060  {csn 4313   class class class wbr 4783   × cxp 5246  1𝑜c1o 7704  cen 8104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ral 3064  df-rex 3065  df-rab 3068  df-v 3350  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4572  df-int 4609  df-br 4784  df-opab 4844  df-mpt 4861  df-id 5156  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-suc 5871  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-1o 7711  df-en 8108
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator