MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xorcom Structured version   Visualization version   GIF version

Theorem xorcom 1615
Description: The connector is commutative. (Contributed by Mario Carneiro, 4-Sep-2016.)
Assertion
Ref Expression
xorcom ((𝜑𝜓) ↔ (𝜓𝜑))

Proof of Theorem xorcom
StepHypRef Expression
1 bicom 212 . . 3 ((𝜑𝜓) ↔ (𝜓𝜑))
21notbii 309 . 2 (¬ (𝜑𝜓) ↔ ¬ (𝜓𝜑))
3 df-xor 1613 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
4 df-xor 1613 . 2 ((𝜓𝜑) ↔ ¬ (𝜓𝜑))
52, 3, 43bitr4i 292 1 ((𝜑𝜓) ↔ (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wxo 1612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-xor 1613
This theorem is referenced by:  xorneg1  1623  falxortru  1678  hadcoma  1686  hadcomb  1687  cadcoma  1699
  Copyright terms: Public domain W3C validator