![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xor3 | Structured version Visualization version GIF version |
Description: Two ways to express "exclusive or." (Contributed by NM, 1-Jan-2006.) |
Ref | Expression |
---|---|
xor3 | ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.18 370 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) | |
2 | 1 | con2bii 346 | . 2 ⊢ ((𝜑 ↔ ¬ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
3 | 2 | bicomi 214 | 1 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: nbbn 372 pm5.15 983 nbi2 985 xorass 1615 hadnot 1688 nabbi 3044 symdifass 4000 notzfaus 4968 nmogtmnf 27959 nmopgtmnf 29061 limsucncmpi 32775 aiffnbandciffatnotciffb 41585 axorbciffatcxorb 41586 abnotbtaxb 41596 |
Copyright terms: Public domain | W3C validator |