MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xor3 Structured version   Visualization version   GIF version

Theorem xor3 371
Description: Two ways to express "exclusive or." (Contributed by NM, 1-Jan-2006.)
Assertion
Ref Expression
xor3 (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))

Proof of Theorem xor3
StepHypRef Expression
1 pm5.18 370 . . 3 ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))
21con2bii 346 . 2 ((𝜑 ↔ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
32bicomi 214 1 (¬ (𝜑𝜓) ↔ (𝜑 ↔ ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197
This theorem is referenced by:  nbbn  372  pm5.15  983  nbi2  985  xorass  1615  hadnot  1688  nabbi  3044  symdifass  4000  notzfaus  4968  nmogtmnf  27959  nmopgtmnf  29061  limsucncmpi  32775  aiffnbandciffatnotciffb  41585  axorbciffatcxorb  41586  abnotbtaxb  41596
  Copyright terms: Public domain W3C validator