MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0n0n1ge2b Structured version   Visualization version   GIF version

Theorem xnn0n0n1ge2b 12150
Description: An extended nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by AV, 5-Apr-2021.)
Assertion
Ref Expression
xnn0n0n1ge2b (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))

Proof of Theorem xnn0n0n1ge2b
StepHypRef Expression
1 elxnn0 11549 . 2 (𝑁 ∈ ℕ0* ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
2 nn0n0n1ge2b 11543 . . 3 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
3 0nn0 11491 . . . . . . . 8 0 ∈ ℕ0
4 nn0nepnf 11555 . . . . . . . 8 (0 ∈ ℕ0 → 0 ≠ +∞)
53, 4ax-mp 5 . . . . . . 7 0 ≠ +∞
65necomi 2978 . . . . . 6 +∞ ≠ 0
7 neeq1 2986 . . . . . 6 (𝑁 = +∞ → (𝑁 ≠ 0 ↔ +∞ ≠ 0))
86, 7mpbiri 248 . . . . 5 (𝑁 = +∞ → 𝑁 ≠ 0)
9 1nn0 11492 . . . . . . . 8 1 ∈ ℕ0
10 nn0nepnf 11555 . . . . . . . 8 (1 ∈ ℕ0 → 1 ≠ +∞)
119, 10ax-mp 5 . . . . . . 7 1 ≠ +∞
1211necomi 2978 . . . . . 6 +∞ ≠ 1
13 neeq1 2986 . . . . . 6 (𝑁 = +∞ → (𝑁 ≠ 1 ↔ +∞ ≠ 1))
1412, 13mpbiri 248 . . . . 5 (𝑁 = +∞ → 𝑁 ≠ 1)
158, 14jca 555 . . . 4 (𝑁 = +∞ → (𝑁 ≠ 0 ∧ 𝑁 ≠ 1))
16 2re 11274 . . . . . . 7 2 ∈ ℝ
1716rexri 10281 . . . . . 6 2 ∈ ℝ*
18 pnfge 12149 . . . . . 6 (2 ∈ ℝ* → 2 ≤ +∞)
1917, 18ax-mp 5 . . . . 5 2 ≤ +∞
20 breq2 4800 . . . . 5 (𝑁 = +∞ → (2 ≤ 𝑁 ↔ 2 ≤ +∞))
2119, 20mpbiri 248 . . . 4 (𝑁 = +∞ → 2 ≤ 𝑁)
2215, 212thd 255 . . 3 (𝑁 = +∞ → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
232, 22jaoi 393 . 2 ((𝑁 ∈ ℕ0𝑁 = +∞) → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
241, 23sylbi 207 1 (𝑁 ∈ ℕ0* → ((𝑁 ≠ 0 ∧ 𝑁 ≠ 1) ↔ 2 ≤ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383   = wceq 1624  wcel 2131  wne 2924   class class class wbr 4796  0cc0 10120  1c1 10121  +∞cpnf 10255  *cxr 10257  cle 10259  2c2 11254  0cn0 11476  0*cxnn0 11547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-n0 11477  df-xnn0 11548
This theorem is referenced by:  vdgfrgrgt2  27444
  Copyright terms: Public domain W3C validator