Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0lenn0nn0 Structured version   Visualization version   GIF version

Theorem xnn0lenn0nn0 12113
 Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
xnn0lenn0nn0 ((𝑀 ∈ ℕ0*𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℕ0)

Proof of Theorem xnn0lenn0nn0
StepHypRef Expression
1 elxnn0 11403 . . 3 (𝑀 ∈ ℕ0* ↔ (𝑀 ∈ ℕ0𝑀 = +∞))
2 2a1 28 . . . 4 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
3 breq1 4688 . . . . . . 7 (𝑀 = +∞ → (𝑀𝑁 ↔ +∞ ≤ 𝑁))
43adantr 480 . . . . . 6 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ +∞ ≤ 𝑁))
5 nn0re 11339 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65rexrd 10127 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
7 xgepnf 12034 . . . . . . . . 9 (𝑁 ∈ ℝ* → (+∞ ≤ 𝑁𝑁 = +∞))
86, 7syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁𝑁 = +∞))
9 pnfnre 10119 . . . . . . . . 9 +∞ ∉ ℝ
10 eleq1 2718 . . . . . . . . . . 11 (𝑁 = +∞ → (𝑁 ∈ ℕ0 ↔ +∞ ∈ ℕ0))
11 nn0re 11339 . . . . . . . . . . . 12 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
12 elnelall 2939 . . . . . . . . . . . 12 (+∞ ∈ ℝ → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))
1311, 12syl 17 . . . . . . . . . . 11 (+∞ ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0))
1410, 13syl6bi 243 . . . . . . . . . 10 (𝑁 = +∞ → (𝑁 ∈ ℕ0 → (+∞ ∉ ℝ → 𝑀 ∈ ℕ0)))
1514com13 88 . . . . . . . . 9 (+∞ ∉ ℝ → (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0)))
169, 15ax-mp 5 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 = +∞ → 𝑀 ∈ ℕ0))
178, 16sylbid 230 . . . . . . 7 (𝑁 ∈ ℕ0 → (+∞ ≤ 𝑁𝑀 ∈ ℕ0))
1817adantl 481 . . . . . 6 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (+∞ ≤ 𝑁𝑀 ∈ ℕ0))
194, 18sylbid 230 . . . . 5 ((𝑀 = +∞ ∧ 𝑁 ∈ ℕ0) → (𝑀𝑁𝑀 ∈ ℕ0))
2019ex 449 . . . 4 (𝑀 = +∞ → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
212, 20jaoi 393 . . 3 ((𝑀 ∈ ℕ0𝑀 = +∞) → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
221, 21sylbi 207 . 2 (𝑀 ∈ ℕ0* → (𝑁 ∈ ℕ0 → (𝑀𝑁𝑀 ∈ ℕ0)))
23223imp 1275 1 ((𝑀 ∈ ℕ0*𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℕ0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ∉ wnel 2926   class class class wbr 4685  ℝcr 9973  +∞cpnf 10109  ℝ*cxr 10111   ≤ cle 10113  ℕ0cn0 11330  ℕ0*cxnn0 11401 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-i2m1 10042  ax-1ne0 10043  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-nn 11059  df-n0 11331  df-xnn0 11402 This theorem is referenced by:  xnn0le2is012  12114
 Copyright terms: Public domain W3C validator