![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xnegneg | Structured version Visualization version GIF version |
Description: Extended real version of negneg 10519. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegneg | ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 12139 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | rexneg 12231 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝑒𝐴 = -𝐴) | |
3 | xnegeq 12227 | . . . . 5 ⊢ (-𝑒𝐴 = -𝐴 → -𝑒-𝑒𝐴 = -𝑒-𝐴) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = -𝑒-𝐴) |
5 | renegcl 10532 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
6 | rexneg 12231 | . . . . 5 ⊢ (-𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ → -𝑒-𝐴 = --𝐴) |
8 | recn 10214 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | 8 | negnegd 10571 | . . . 4 ⊢ (𝐴 ∈ ℝ → --𝐴 = 𝐴) |
10 | 4, 7, 9 | 3eqtrd 2794 | . . 3 ⊢ (𝐴 ∈ ℝ → -𝑒-𝑒𝐴 = 𝐴) |
11 | xnegmnf 12230 | . . . 4 ⊢ -𝑒-∞ = +∞ | |
12 | xnegeq 12227 | . . . . . 6 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -𝑒+∞) | |
13 | xnegpnf 12229 | . . . . . 6 ⊢ -𝑒+∞ = -∞ | |
14 | 12, 13 | syl6eq 2806 | . . . . 5 ⊢ (𝐴 = +∞ → -𝑒𝐴 = -∞) |
15 | xnegeq 12227 | . . . . 5 ⊢ (-𝑒𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒-∞) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ (𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒-∞) |
17 | id 22 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
18 | 11, 16, 17 | 3eqtr4a 2816 | . . 3 ⊢ (𝐴 = +∞ → -𝑒-𝑒𝐴 = 𝐴) |
19 | xnegeq 12227 | . . . . . 6 ⊢ (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞) | |
20 | 19, 11 | syl6eq 2806 | . . . . 5 ⊢ (𝐴 = -∞ → -𝑒𝐴 = +∞) |
21 | xnegeq 12227 | . . . . 5 ⊢ (-𝑒𝐴 = +∞ → -𝑒-𝑒𝐴 = -𝑒+∞) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝐴 = -∞ → -𝑒-𝑒𝐴 = -𝑒+∞) |
23 | id 22 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
24 | 13, 22, 23 | 3eqtr4a 2816 | . . 3 ⊢ (𝐴 = -∞ → -𝑒-𝑒𝐴 = 𝐴) |
25 | 10, 18, 24 | 3jaoi 1536 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → -𝑒-𝑒𝐴 = 𝐴) |
26 | 1, 25 | sylbi 207 | 1 ⊢ (𝐴 ∈ ℝ* → -𝑒-𝑒𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1071 = wceq 1628 ∈ wcel 2135 ℝcr 10123 +∞cpnf 10259 -∞cmnf 10260 ℝ*cxr 10261 -cneg 10455 -𝑒cxne 12132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-po 5183 df-so 5184 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-sub 10456 df-neg 10457 df-xneg 12135 |
This theorem is referenced by: xneg11 12235 xltneg 12237 xnegdi 12267 xnpcan 12271 xposdif 12281 xrsxmet 22809 xrhmeo 22942 xaddeq0 29823 xrge0npcan 29999 carsgclctunlem2 30686 xnegnegi 40160 xnegnegd 40163 xnegrecl2 40184 supminfxr2 40193 supminfxrrnmpt 40195 |
Copyright terms: Public domain | W3C validator |