![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xnegeqd | Structured version Visualization version GIF version |
Description: Equality of two extended numbers with -𝑒 in front of them. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
xnegeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
xnegeqd | ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xnegeq 12243 | . 2 ⊢ (𝐴 = 𝐵 → -𝑒𝐴 = -𝑒𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → -𝑒𝐴 = -𝑒𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 -𝑒cxne 12148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-iota 5994 df-fv 6039 df-ov 6796 df-neg 10471 df-xneg 12151 |
This theorem is referenced by: supminfxr 40210 supminfxr2 40215 supminfxrrnmpt 40217 monoord2xrv 40230 liminfvalxr 40533 liminfvalxrmpt 40536 liminfval4 40539 liminfval3 40540 limsupval4 40544 liminfvaluz2 40545 limsupvaluz4 40550 climliminflimsupd 40551 smfliminflem 41556 |
Copyright terms: Public domain | W3C validator |