![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmulpnf2 | Structured version Visualization version GIF version |
Description: Multiplication by plus infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmulpnf2 | ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (+∞ ·e 𝐴) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 10294 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | xmulcom 12301 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (+∞ ·e 𝐴) = (𝐴 ·e +∞)) | |
3 | 1, 2 | mpan 670 | . . 3 ⊢ (𝐴 ∈ ℝ* → (+∞ ·e 𝐴) = (𝐴 ·e +∞)) |
4 | 3 | adantr 466 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (+∞ ·e 𝐴) = (𝐴 ·e +∞)) |
5 | xmulpnf1 12309 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞) | |
6 | 4, 5 | eqtrd 2805 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (+∞ ·e 𝐴) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 (class class class)co 6793 0cc0 10138 +∞cpnf 10273 ℝ*cxr 10275 < clt 10276 ·e cxmu 12150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-i2m1 10206 ax-1ne0 10207 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-xmul 12153 |
This theorem is referenced by: xmulid1 12314 xmulgt0 12318 xmulasslem3 12321 xlemul1a 12323 xadddi2 12332 nmoix 22753 esumpinfsum 30479 |
Copyright terms: Public domain | W3C validator |