![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmulid1 | Structured version Visualization version GIF version |
Description: Extended real version of mulid1 10249. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmulid1 | ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 12163 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | 1re 10251 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | rexmul 12314 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 ·e 1) = (𝐴 · 1)) | |
4 | 2, 3 | mpan2 709 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 ·e 1) = (𝐴 · 1)) |
5 | ax-1rid 10218 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
6 | 4, 5 | eqtrd 2794 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ·e 1) = 𝐴) |
7 | 2 | rexri 10309 | . . . . 5 ⊢ 1 ∈ ℝ* |
8 | 0lt1 10762 | . . . . 5 ⊢ 0 < 1 | |
9 | xmulpnf2 12318 | . . . . 5 ⊢ ((1 ∈ ℝ* ∧ 0 < 1) → (+∞ ·e 1) = +∞) | |
10 | 7, 8, 9 | mp2an 710 | . . . 4 ⊢ (+∞ ·e 1) = +∞ |
11 | oveq1 6821 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ·e 1) = (+∞ ·e 1)) | |
12 | id 22 | . . . 4 ⊢ (𝐴 = +∞ → 𝐴 = +∞) | |
13 | 10, 11, 12 | 3eqtr4a 2820 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ·e 1) = 𝐴) |
14 | xmulmnf2 12320 | . . . . 5 ⊢ ((1 ∈ ℝ* ∧ 0 < 1) → (-∞ ·e 1) = -∞) | |
15 | 7, 8, 14 | mp2an 710 | . . . 4 ⊢ (-∞ ·e 1) = -∞ |
16 | oveq1 6821 | . . . 4 ⊢ (𝐴 = -∞ → (𝐴 ·e 1) = (-∞ ·e 1)) | |
17 | id 22 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
18 | 15, 16, 17 | 3eqtr4a 2820 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 ·e 1) = 𝐴) |
19 | 6, 13, 18 | 3jaoi 1540 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 ·e 1) = 𝐴) |
20 | 1, 19 | sylbi 207 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1071 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 (class class class)co 6814 ℝcr 10147 0cc0 10148 1c1 10149 · cmul 10153 +∞cpnf 10283 -∞cmnf 10284 ℝ*cxr 10285 < clt 10286 ·e cxmu 12158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-xneg 12159 df-xmul 12161 |
This theorem is referenced by: xmulid2 12323 xlemul1 12333 xrsmcmn 19991 nmoi2 22755 xdivrec 29965 omssubadd 30692 |
Copyright terms: Public domain | W3C validator |