Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xmulcand Structured version   Visualization version   GIF version

Theorem xmulcand 29938
 Description: Cancellation law for extended multiplication. (Contributed by Thierry Arnoux, 17-Dec-2016.)
Hypotheses
Ref Expression
xmulcand.1 (𝜑𝐴 ∈ ℝ*)
xmulcand.2 (𝜑𝐵 ∈ ℝ*)
xmulcand.3 (𝜑𝐶 ∈ ℝ)
xmulcand.4 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
xmulcand (𝜑 → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem xmulcand
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xmulcand.3 . . . 4 (𝜑𝐶 ∈ ℝ)
2 xmulcand.4 . . . 4 (𝜑𝐶 ≠ 0)
3 xrecex 29937 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℝ (𝐶 ·e 𝑥) = 1)
41, 2, 3syl2anc 696 . . 3 (𝜑 → ∃𝑥 ∈ ℝ (𝐶 ·e 𝑥) = 1)
5 oveq2 6821 . . . 4 ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) → (𝑥 ·e (𝐶 ·e 𝐴)) = (𝑥 ·e (𝐶 ·e 𝐵)))
6 simprl 811 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝑥 ∈ ℝ)
76rexrd 10281 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝑥 ∈ ℝ*)
81adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐶 ∈ ℝ)
98rexrd 10281 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐶 ∈ ℝ*)
10 xmulcom 12289 . . . . . . . . 9 ((𝑥 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
117, 9, 10syl2anc 696 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
12 simprr 813 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝐶 ·e 𝑥) = 1)
1311, 12eqtrd 2794 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e 𝐶) = 1)
1413oveq1d 6828 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐴) = (1 ·e 𝐴))
15 xmulcand.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1615adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐴 ∈ ℝ*)
17 xmulass 12310 . . . . . . 7 ((𝑥 ∈ ℝ*𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → ((𝑥 ·e 𝐶) ·e 𝐴) = (𝑥 ·e (𝐶 ·e 𝐴)))
187, 9, 16, 17syl3anc 1477 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐴) = (𝑥 ·e (𝐶 ·e 𝐴)))
19 xmulid2 12303 . . . . . . 7 (𝐴 ∈ ℝ* → (1 ·e 𝐴) = 𝐴)
2016, 19syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (1 ·e 𝐴) = 𝐴)
2114, 18, 203eqtr3d 2802 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e (𝐶 ·e 𝐴)) = 𝐴)
2213oveq1d 6828 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐵) = (1 ·e 𝐵))
23 xmulcand.2 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
2423adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → 𝐵 ∈ ℝ*)
25 xmulass 12310 . . . . . . 7 ((𝑥 ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑥 ·e 𝐶) ·e 𝐵) = (𝑥 ·e (𝐶 ·e 𝐵)))
267, 9, 24, 25syl3anc 1477 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e 𝐶) ·e 𝐵) = (𝑥 ·e (𝐶 ·e 𝐵)))
27 xmulid2 12303 . . . . . . 7 (𝐵 ∈ ℝ* → (1 ·e 𝐵) = 𝐵)
2824, 27syl 17 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (1 ·e 𝐵) = 𝐵)
2922, 26, 283eqtr3d 2802 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → (𝑥 ·e (𝐶 ·e 𝐵)) = 𝐵)
3021, 29eqeq12d 2775 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝑥 ·e (𝐶 ·e 𝐴)) = (𝑥 ·e (𝐶 ·e 𝐵)) ↔ 𝐴 = 𝐵))
315, 30syl5ib 234 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (𝐶 ·e 𝑥) = 1)) → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) → 𝐴 = 𝐵))
324, 31rexlimddv 3173 . 2 (𝜑 → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) → 𝐴 = 𝐵))
33 oveq2 6821 . 2 (𝐴 = 𝐵 → (𝐶 ·e 𝐴) = (𝐶 ·e 𝐵))
3432, 33impbid1 215 1 (𝜑 → ((𝐶 ·e 𝐴) = (𝐶 ·e 𝐵) ↔ 𝐴 = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∃wrex 3051  (class class class)co 6813  ℝcr 10127  0cc0 10128  1c1 10129  ℝ*cxr 10265   ·e cxmu 12138 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-xneg 12139  df-xmul 12141 This theorem is referenced by:  xreceu  29939
 Copyright terms: Public domain W3C validator