![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmul02 | Structured version Visualization version GIF version |
Description: Extended real version of mul02 10327. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmul02 | ⊢ (𝐴 ∈ ℝ* → (0 ·e 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10199 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | xmulcom 12210 | . . 3 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (0 ·e 𝐴) = (𝐴 ·e 0)) | |
3 | 1, 2 | mpan 708 | . 2 ⊢ (𝐴 ∈ ℝ* → (0 ·e 𝐴) = (𝐴 ·e 0)) |
4 | xmul01 12211 | . 2 ⊢ (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0) | |
5 | 3, 4 | eqtrd 2758 | 1 ⊢ (𝐴 ∈ ℝ* → (0 ·e 𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 (class class class)co 6765 0cc0 10049 ℝ*cxr 10186 ·e cxmu 12059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-i2m1 10117 ax-1ne0 10118 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-po 5139 df-so 5140 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-xmul 12062 |
This theorem is referenced by: xmulge0 12228 xmulass 12231 xlemul1a 12232 xadddi 12239 xrsmulgzz 29908 xrge0adddir 29922 xrge0slmod 30074 esummulc1 30373 |
Copyright terms: Public domain | W3C validator |