MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmettri2 Structured version   Visualization version   GIF version

Theorem xmettri2 22365
Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettri2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))

Proof of Theorem xmettri2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6361 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
2 isxmet 22349 . . . . . . . 8 (𝑋 ∈ dom ∞Met → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
31, 2syl 17 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))))
43ibi 256 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))
54simprd 483 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))))
6 simpr 471 . . . . . 6 ((((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
762ralimi 3102 . . . . 5 (∀𝑥𝑋𝑦𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
85, 7syl 17 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ∀𝑥𝑋𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))
9 oveq1 6800 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐷𝑦) = (𝐴𝐷𝑦))
10 oveq2 6801 . . . . . . 7 (𝑥 = 𝐴 → (𝑧𝐷𝑥) = (𝑧𝐷𝐴))
1110oveq1d 6808 . . . . . 6 (𝑥 = 𝐴 → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦)))
129, 11breq12d 4799 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) ↔ (𝐴𝐷𝑦) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦))))
13 oveq2 6801 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝐷𝑦) = (𝐴𝐷𝐵))
14 oveq2 6801 . . . . . . 7 (𝑦 = 𝐵 → (𝑧𝐷𝑦) = (𝑧𝐷𝐵))
1514oveq2d 6809 . . . . . 6 (𝑦 = 𝐵 → ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵)))
1613, 15breq12d 4799 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝐷𝑦) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝑦)) ↔ (𝐴𝐷𝐵) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵))))
17 oveq1 6800 . . . . . . 7 (𝑧 = 𝐶 → (𝑧𝐷𝐴) = (𝐶𝐷𝐴))
18 oveq1 6800 . . . . . . 7 (𝑧 = 𝐶 → (𝑧𝐷𝐵) = (𝐶𝐷𝐵))
1917, 18oveq12d 6811 . . . . . 6 (𝑧 = 𝐶 → ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵)) = ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
2019breq2d 4798 . . . . 5 (𝑧 = 𝐶 → ((𝐴𝐷𝐵) ≤ ((𝑧𝐷𝐴) +𝑒 (𝑧𝐷𝐵)) ↔ (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
2112, 16, 20rspc3v 3475 . . . 4 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (∀𝑥𝑋𝑦𝑋𝑧𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
228, 21syl5 34 . . 3 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
23223comr 1119 . 2 ((𝐶𝑋𝐴𝑋𝐵𝑋) → (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))))
2423impcom 394 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061   class class class wbr 4786   × cxp 5247  dom cdm 5249  wf 6027  cfv 6031  (class class class)co 6793  0cc0 10138  *cxr 10275  cle 10277   +𝑒 cxad 12149  ∞Metcxmt 19946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-map 8011  df-xr 10280  df-xmet 19954
This theorem is referenced by:  mettri2  22366  xmetge0  22369  xmetsym  22372  xmetpsmet  22373  xmettri  22376  xmetres2  22386  prdsxmetlem  22393  imasf1oxmet  22400  xblss2  22427  xmstri2  22491  comet  22538
  Copyright terms: Public domain W3C validator