![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmetec | Structured version Visualization version GIF version |
Description: The equivalence classes under the finite separation equivalence relation are infinity balls. Thus, by erdisj 7963, infinity balls are either identical or disjoint, quite unlike the usual situation with Euclidean balls which admit many kinds of overlap. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xmeter.1 | ⊢ ∼ = (◡𝐷 “ ℝ) |
Ref | Expression |
---|---|
xmetec | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmeter.1 | . . . . 5 ⊢ ∼ = (◡𝐷 “ ℝ) | |
2 | 1 | xmeterval 22458 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑃 ∼ 𝑥 ↔ (𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
3 | 3anass 1081 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑃 ∈ 𝑋 ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) | |
4 | 3 | baib 982 | . . . 4 ⊢ (𝑃 ∈ 𝑋 → ((𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
5 | 2, 4 | sylan9bb 738 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) |
6 | vex 3343 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑥 ∈ V) |
8 | elecg 7954 | . . . 4 ⊢ ((𝑥 ∈ V ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ [𝑃] ∼ ↔ 𝑃 ∼ 𝑥)) | |
9 | 7, 8 | sylan 489 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ [𝑃] ∼ ↔ 𝑃 ∼ 𝑥)) |
10 | xblpnf 22422 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) ∈ ℝ))) | |
11 | 5, 9, 10 | 3bitr4d 300 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑥 ∈ [𝑃] ∼ ↔ 𝑥 ∈ (𝑃(ball‘𝐷)+∞))) |
12 | 11 | eqrdv 2758 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 Vcvv 3340 class class class wbr 4804 ◡ccnv 5265 “ cima 5269 ‘cfv 6049 (class class class)co 6814 [cec 7911 ℝcr 10147 +∞cpnf 10283 ∞Metcxmt 19953 ballcbl 19955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-er 7913 df-ec 7915 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-2 11291 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-psmet 19960 df-xmet 19961 df-bl 19963 |
This theorem is referenced by: blssec 22461 blpnfctr 22462 |
Copyright terms: Public domain | W3C validator |