Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimxrre Structured version   Visualization version   GIF version

Theorem xlimxrre 40560
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimxrre.m (𝜑𝑀 ∈ ℤ)
xlimxrre.z 𝑍 = (ℤ𝑀)
xlimxrre.f (𝜑𝐹:𝑍⟶ℝ*)
xlimxrre.a (𝜑𝐴 ∈ ℝ)
xlimxrre.c (𝜑𝐹~~>*𝐴)
Assertion
Ref Expression
xlimxrre (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem xlimxrre
Dummy variables 𝑘 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elioore 12398 . . . . . . 7 ((𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐹𝑘) ∈ ℝ)
21anim2i 594 . . . . . 6 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
32ralimi 3090 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
43adantl 473 . . . 4 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
5 xlimxrre.f . . . . . . 7 (𝜑𝐹:𝑍⟶ℝ*)
65ffund 6210 . . . . . 6 (𝜑 → Fun 𝐹)
7 ffvresb 6557 . . . . . 6 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
86, 7syl 17 . . . . 5 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
98adantr 472 . . . 4 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
104, 9mpbird 247 . . 3 ((𝜑 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
1110adantrl 754 . 2 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
12 xlimxrre.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
13 peano2rem 10540 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
1412, 13syl 17 . . . . 5 (𝜑 → (𝐴 − 1) ∈ ℝ)
1514rexrd 10281 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℝ*)
16 peano2re 10401 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
1712, 16syl 17 . . . . 5 (𝜑 → (𝐴 + 1) ∈ ℝ)
1817rexrd 10281 . . . 4 (𝜑 → (𝐴 + 1) ∈ ℝ*)
1912ltm1d 11148 . . . 4 (𝜑 → (𝐴 − 1) < 𝐴)
2012ltp1d 11146 . . . 4 (𝜑𝐴 < (𝐴 + 1))
2115, 18, 12, 19, 20eliood 40223 . . 3 (𝜑𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)))
22 iooordt 21223 . . . 4 ((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ )
23 xlimxrre.c . . . . . 6 (𝜑𝐹~~>*𝐴)
24 nfcv 2902 . . . . . . 7 𝑘𝐹
25 xlimxrre.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
26 xlimxrre.z . . . . . . 7 𝑍 = (ℤ𝑀)
27 eqid 2760 . . . . . . 7 (ordTop‘ ≤ ) = (ordTop‘ ≤ )
2824, 25, 26, 5, 27xlimbr 40556 . . . . . 6 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
2923, 28mpbid 222 . . . . 5 (𝜑 → (𝐴 ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
3029simprd 482 . . . 4 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
31 eleq2 2828 . . . . . 6 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (𝐴𝑢𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
32 eleq2 2828 . . . . . . . 8 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
3332anbi2d 742 . . . . . . 7 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3433rexralbidv 3196 . . . . . 6 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3531, 34imbi12d 333 . . . . 5 (𝑢 = ((𝐴 − 1)(,)(𝐴 + 1)) → ((𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))))
3635rspcva 3447 . . . 4 ((((𝐴 − 1)(,)(𝐴 + 1)) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(𝐴𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3722, 30, 36sylancr 698 . . 3 (𝜑 → (𝐴 ∈ ((𝐴 − 1)(,)(𝐴 + 1)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1)))))
3821, 37mpd 15 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ((𝐴 − 1)(,)(𝐴 + 1))))
3911, 38reximddv 3156 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051   class class class wbr 4804  dom cdm 5266  cres 5268  Fun wfun 6043  wf 6045  cfv 6049  (class class class)co 6813  cr 10127  1c1 10129   + caddc 10131  *cxr 10265  cle 10267  cmin 10458  cz 11569  cuz 11879  (,)cioo 12368  ordTopcordt 16361  ~~>*clsxlim 40547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fi 8482  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-q 11982  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-topgen 16306  df-ordt 16363  df-ps 17401  df-tsr 17402  df-top 20901  df-topon 20918  df-bases 20952  df-lm 21235  df-xlim 40548
This theorem is referenced by:  xlimclim2  40569
  Copyright terms: Public domain W3C validator