Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimpnfvlem1 Structured version   Visualization version   GIF version

Theorem xlimpnfvlem1 40561
 Description: Lemma for xlimpnfv 40563: the "only if" part of the biconditional. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimpnfvlem1.m (𝜑𝑀 ∈ ℤ)
xlimpnfvlem1.z 𝑍 = (ℤ𝑀)
xlimpnfvlem1.f (𝜑𝐹:𝑍⟶ℝ*)
xlimpnfvlem1.c (𝜑𝐹~~>*+∞)
xlimpnfvlem1.x (𝜑𝑋 ∈ ℝ)
Assertion
Ref Expression
xlimpnfvlem1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘))
Distinct variable groups:   𝑗,𝐹,𝑘   𝑗,𝑀   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘   𝜑,𝑗,𝑘
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem xlimpnfvlem1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 iocpnfordt 21217 . . . . . 6 (𝑋(,]+∞) ∈ (ordTop‘ ≤ )
21a1i 11 . . . . 5 (𝜑 → (𝑋(,]+∞) ∈ (ordTop‘ ≤ ))
3 xlimpnfvlem1.c . . . . . . . 8 (𝜑𝐹~~>*+∞)
4 df-xlim 40544 . . . . . . . . 9 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
54breqi 4806 . . . . . . . 8 (𝐹~~>*+∞ ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞)
63, 5sylib 208 . . . . . . 7 (𝜑𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞)
7 nfcv 2898 . . . . . . . 8 𝑘𝐹
8 letopon 21207 . . . . . . . . 9 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
98a1i 11 . . . . . . . 8 (𝜑 → (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*))
107, 9lmbr3 40478 . . . . . . 7 (𝜑 → (𝐹(⇝𝑡‘(ordTop‘ ≤ ))+∞ ↔ (𝐹 ∈ (ℝ*pm ℂ) ∧ +∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
116, 10mpbid 222 . . . . . 6 (𝜑 → (𝐹 ∈ (ℝ*pm ℂ) ∧ +∞ ∈ ℝ* ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
1211simp3d 1139 . . . . 5 (𝜑 → ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
132, 12jca 555 . . . 4 (𝜑 → ((𝑋(,]+∞) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
14 xlimpnfvlem1.x . . . . . 6 (𝜑𝑋 ∈ ℝ)
1514rexrd 10277 . . . . 5 (𝜑𝑋 ∈ ℝ*)
1611simp2d 1138 . . . . 5 (𝜑 → +∞ ∈ ℝ*)
1714ltpnfd 12144 . . . . 5 (𝜑𝑋 < +∞)
18 ubioc1 12416 . . . . 5 ((𝑋 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑋 < +∞) → +∞ ∈ (𝑋(,]+∞))
1915, 16, 17, 18syl3anc 1477 . . . 4 (𝜑 → +∞ ∈ (𝑋(,]+∞))
20 eleq2 2824 . . . . . 6 (𝑢 = (𝑋(,]+∞) → (+∞ ∈ 𝑢 ↔ +∞ ∈ (𝑋(,]+∞)))
21 eleq2 2824 . . . . . . . . 9 (𝑢 = (𝑋(,]+∞) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝐹𝑘) ∈ (𝑋(,]+∞)))
2221anbi2d 742 . . . . . . . 8 (𝑢 = (𝑋(,]+∞) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))))
2322ralbidv 3120 . . . . . . 7 (𝑢 = (𝑋(,]+∞) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))))
2423rexbidv 3186 . . . . . 6 (𝑢 = (𝑋(,]+∞) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))))
2520, 24imbi12d 333 . . . . 5 (𝑢 = (𝑋(,]+∞) → ((+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)) ↔ (+∞ ∈ (𝑋(,]+∞) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)))))
2625rspcva 3443 . . . 4 (((𝑋(,]+∞) ∈ (ordTop‘ ≤ ) ∧ ∀𝑢 ∈ (ordTop‘ ≤ )(+∞ ∈ 𝑢 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) → (+∞ ∈ (𝑋(,]+∞) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))))
2713, 19, 26sylc 65 . . 3 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)))
28 nfv 1988 . . . 4 𝑗𝜑
29 nfv 1988 . . . . . 6 𝑘𝜑
3015adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → 𝑋 ∈ ℝ*)
31 xlimpnfvlem1.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶ℝ*)
3231ffdmd 6220 . . . . . . . . . . 11 (𝜑𝐹:dom 𝐹⟶ℝ*)
3332ffvelrnda 6518 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom 𝐹) → (𝐹𝑘) ∈ ℝ*)
3433adantrr 755 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → (𝐹𝑘) ∈ ℝ*)
3516adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → +∞ ∈ ℝ*)
36 simprr 813 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → (𝐹𝑘) ∈ (𝑋(,]+∞))
3730, 35, 36iocgtlbd 40297 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → 𝑋 < (𝐹𝑘))
3830, 34, 37xrltled 39981 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞))) → 𝑋 ≤ (𝐹𝑘))
3938ex 449 . . . . . . 7 (𝜑 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → 𝑋 ≤ (𝐹𝑘)))
4039adantr 472 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → 𝑋 ≤ (𝐹𝑘)))
4129, 40ralimda 39821 . . . . 5 (𝜑 → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘)))
4241a1d 25 . . . 4 (𝜑 → (𝑗 ∈ ℤ → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘))))
4328, 42reximdai 3146 . . 3 (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ (𝑋(,]+∞)) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘)))
4427, 43mpd 15 . 2 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘))
45 xlimpnfvlem1.m . . 3 (𝜑𝑀 ∈ ℤ)
46 xlimpnfvlem1.z . . . 4 𝑍 = (ℤ𝑀)
4746rexuz3 14283 . . 3 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘)))
4845, 47syl 17 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘)))
4944, 48mpbird 247 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑋 ≤ (𝐹𝑘))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1628   ∈ wcel 2135  ∀wral 3046  ∃wrex 3047   class class class wbr 4800  dom cdm 5262  ⟶wf 6041  ‘cfv 6045  (class class class)co 6809   ↑pm cpm 8020  ℂcc 10122  ℝcr 10123  +∞cpnf 10259  ℝ*cxr 10261   < clt 10262   ≤ cle 10263  ℤcz 11565  ℤ≥cuz 11875  (,]cioc 12365  ordTopcordt 16357  TopOnctopon 20913  ⇝𝑡clm 21228  ~~>*clsxlim 40543 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-pm 8022  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-fi 8478  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-z 11566  df-uz 11876  df-ioo 12368  df-ioc 12369  df-ico 12370  df-icc 12371  df-topgen 16302  df-ordt 16359  df-ps 17397  df-tsr 17398  df-top 20897  df-topon 20914  df-bases 20948  df-lm 21231  df-xlim 40544 This theorem is referenced by:  xlimpnfv  40563
 Copyright terms: Public domain W3C validator