![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimpnfmpt | Structured version Visualization version GIF version |
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimpnfmpt.k | ⊢ Ⅎ𝑘𝜑 |
xlimpnfmpt.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
xlimpnfmpt.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimpnfmpt.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) |
xlimpnfmpt.f | ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) |
Ref | Expression |
---|---|
xlimpnfmpt | ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimpnfmpt.f | . . . 4 ⊢ 𝐹 = (𝑘 ∈ 𝑍 ↦ 𝐵) | |
2 | nfmpt1 4879 | . . . 4 ⊢ Ⅎ𝑘(𝑘 ∈ 𝑍 ↦ 𝐵) | |
3 | 1, 2 | nfcxfr 2910 | . . 3 ⊢ Ⅎ𝑘𝐹 |
4 | xlimpnfmpt.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | xlimpnfmpt.z | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | xlimpnfmpt.k | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
7 | xlimpnfmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ*) | |
8 | 6, 7, 1 | fmptdf 6529 | . . 3 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
9 | 3, 4, 5, 8 | xlimpnf 40580 | . 2 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑘))) |
10 | nfv 1994 | . . . . . 6 ⊢ Ⅎ𝑘 𝑖 ∈ 𝑍 | |
11 | 6, 10 | nfan 1979 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑖 ∈ 𝑍) |
12 | 5 | uztrn2 11905 | . . . . . . . 8 ⊢ ((𝑖 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝑘 ∈ 𝑍) |
13 | 12 | adantll 685 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝑘 ∈ 𝑍) |
14 | simpll 742 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝜑) | |
15 | 14, 13, 7 | syl2anc 565 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → 𝐵 ∈ ℝ*) |
16 | 1 | fvmpt2 6433 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝑍 ∧ 𝐵 ∈ ℝ*) → (𝐹‘𝑘) = 𝐵) |
17 | 13, 15, 16 | syl2anc 565 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → (𝐹‘𝑘) = 𝐵) |
18 | 17 | breq2d 4796 | . . . . 5 ⊢ (((𝜑 ∧ 𝑖 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑖)) → (𝑦 ≤ (𝐹‘𝑘) ↔ 𝑦 ≤ 𝐵)) |
19 | 11, 18 | ralbida 3130 | . . . 4 ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵)) |
20 | 19 | rexbidva 3196 | . . 3 ⊢ (𝜑 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑘) ↔ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵)) |
21 | 20 | ralbidv 3134 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵)) |
22 | breq1 4787 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝑦 ≤ 𝐵 ↔ 𝑥 ≤ 𝐵)) | |
23 | 22 | rexralbidv 3205 | . . . . 5 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵)) |
24 | fveq2 6332 | . . . . . . 7 ⊢ (𝑖 = 𝑗 → (ℤ≥‘𝑖) = (ℤ≥‘𝑗)) | |
25 | 24 | raleqdv 3292 | . . . . . 6 ⊢ (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
26 | 25 | cbvrexv 3320 | . . . . 5 ⊢ (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑥 ≤ 𝐵 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵) |
27 | 23, 26 | syl6bb 276 | . . . 4 ⊢ (𝑦 = 𝑥 → (∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
28 | 27 | cbvralv 3319 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵) |
29 | 28 | a1i 11 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑖)𝑦 ≤ 𝐵 ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
30 | 9, 21, 29 | 3bitrd 294 | 1 ⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 Ⅎwnf 1855 ∈ wcel 2144 ∀wral 3060 ∃wrex 3061 class class class wbr 4784 ↦ cmpt 4861 ‘cfv 6031 ℝcr 10136 +∞cpnf 10272 ℝ*cxr 10274 ≤ cle 10276 ℤcz 11578 ℤ≥cuz 11887 ~~>*clsxlim 40556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fi 8472 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-z 11579 df-uz 11888 df-ioo 12383 df-ioc 12384 df-ico 12385 df-icc 12386 df-topgen 16311 df-ordt 16368 df-ps 17407 df-tsr 17408 df-top 20918 df-topon 20935 df-bases 20970 df-lm 21253 df-xlim 40557 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |