Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfv Structured version   Visualization version   GIF version

Theorem xlimmnfv 40572
 Description: A function converges to minus infinity if it eventually becomes (and stays) smaller than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfv.m (𝜑𝑀 ∈ ℤ)
xlimmnfv.z 𝑍 = (ℤ𝑀)
xlimmnfv.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimmnfv (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
Distinct variable groups:   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝑀(𝑥,𝑘)

Proof of Theorem xlimmnfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xlimmnfv.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21ad2antrr 697 . . . 4 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℤ)
3 xlimmnfv.z . . . 4 𝑍 = (ℤ𝑀)
4 xlimmnfv.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 697 . . . 4 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
6 simplr 744 . . . 4 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝐹~~>*-∞)
7 simpr 471 . . . 4 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
82, 3, 5, 6, 7xlimmnfvlem1 40570 . . 3 (((𝜑𝐹~~>*-∞) ∧ 𝑥 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
98ralrimiva 3114 . 2 ((𝜑𝐹~~>*-∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
10 nfv 1994 . . . 4 𝑘𝜑
11 nfcv 2912 . . . . 5 𝑘
12 nfcv 2912 . . . . . 6 𝑘𝑍
13 nfra1 3089 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
1412, 13nfrex 3154 . . . . 5 𝑘𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
1511, 14nfral 3093 . . . 4 𝑘𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
1610, 15nfan 1979 . . 3 𝑘(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
17 nfv 1994 . . . 4 𝑗𝜑
18 nfcv 2912 . . . . 5 𝑗
19 nfre1 3152 . . . . 5 𝑗𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
2018, 19nfral 3093 . . . 4 𝑗𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥
2117, 20nfan 1979 . . 3 𝑗(𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
221adantr 466 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → 𝑀 ∈ ℤ)
234adantr 466 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → 𝐹:𝑍⟶ℝ*)
24 nfv 1994 . . . . . 6 𝑗 𝑦 ∈ ℝ
2521, 24nfan 1979 . . . . 5 𝑗((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ)
2643ad2ant1 1126 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝐹:𝑍⟶ℝ*)
273uztrn2 11905 . . . . . . . . . . . . . 14 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
28273adant1 1123 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2926, 28ffvelrnd 6503 . . . . . . . . . . . 12 ((𝜑𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
3029ad5ant134 1465 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝐹𝑘) ∈ ℝ*)
31 simp-4r 762 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → 𝑦 ∈ ℝ)
32 peano2rem 10549 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ)
3332rexrd 10290 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ*)
3431, 33syl 17 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝑦 − 1) ∈ ℝ*)
35 rexr 10286 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
3635ad4antlr 706 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → 𝑦 ∈ ℝ*)
37 simpr 471 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝐹𝑘) ≤ (𝑦 − 1))
3831ltm1d 11157 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝑦 − 1) < 𝑦)
3930, 34, 36, 37, 38xrlelttrd 12195 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ (𝐹𝑘) ≤ (𝑦 − 1)) → (𝐹𝑘) < 𝑦)
4039ex 397 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ≤ (𝑦 − 1) → (𝐹𝑘) < 𝑦))
4140ralimdva 3110 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦))
4241imp 393 . . . . . . 7 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
4342adantl3r 736 . . . . . 6 (((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
44433impa 1099 . . . . 5 ((((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
4532adantl 467 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥𝑦 ∈ ℝ) → (𝑦 − 1) ∈ ℝ)
46 simpl 468 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥𝑦 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
47 breq2 4788 . . . . . . . . . 10 (𝑥 = (𝑦 − 1) → ((𝐹𝑘) ≤ 𝑥 ↔ (𝐹𝑘) ≤ (𝑦 − 1)))
4847ralbidv 3134 . . . . . . . . 9 (𝑥 = (𝑦 − 1) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)))
4948rexbidv 3199 . . . . . . . 8 (𝑥 = (𝑦 − 1) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1)))
5049rspcva 3456 . . . . . . 7 (((𝑦 − 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1))
5145, 46, 50syl2anc 565 . . . . . 6 ((∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1))
5251adantll 685 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ (𝑦 − 1))
5325, 44, 52reximdd 39858 . . . 4 (((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
5453ralrimiva 3114 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → ∀𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) < 𝑦)
5516, 21, 22, 3, 23, 54xlimmnfvlem2 40571 . 2 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → 𝐹~~>*-∞)
569, 55impbida 794 1 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144  ∀wral 3060  ∃wrex 3061   class class class wbr 4784  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792  ℝcr 10136  1c1 10138  -∞cmnf 10273  ℝ*cxr 10274   < clt 10275   ≤ cle 10276   − cmin 10467  ℤcz 11578  ℤ≥cuz 11887  ~~>*clsxlim 40556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fi 8472  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-z 11579  df-uz 11888  df-ioo 12383  df-ioc 12384  df-ico 12385  df-icc 12386  df-topgen 16311  df-ordt 16368  df-ps 17407  df-tsr 17408  df-top 20918  df-topon 20935  df-bases 20970  df-lm 21253  df-xlim 40557 This theorem is referenced by:  xlimmnf  40579
 Copyright terms: Public domain W3C validator