Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimconst2 Structured version   Visualization version   GIF version

Theorem xlimconst2 40583
Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimconst2.p 𝑘𝜑
xlimconst2.k 𝑘𝐹
xlimconst2.z 𝑍 = (ℤ𝑀)
xlimconst2.f (𝜑𝐹:𝑍⟶ℝ*)
xlimconst2.n (𝜑𝑁𝑍)
xlimconst2.a (𝜑𝐴 ∈ ℝ*)
xlimconst2.e ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
xlimconst2 (𝜑𝐹~~>*𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝑀(𝑘)   𝑍(𝑘)

Proof of Theorem xlimconst2
StepHypRef Expression
1 xlimconst2.p . . 3 𝑘𝜑
2 xlimconst2.k . . . 4 𝑘𝐹
3 nfcv 2903 . . . 4 𝑘(ℤ𝑁)
42, 3nfres 5554 . . 3 𝑘(𝐹 ↾ (ℤ𝑁))
5 xlimconst2.z . . . 4 𝑍 = (ℤ𝑀)
6 xlimconst2.n . . . 4 (𝜑𝑁𝑍)
75, 6eluzelz2d 40157 . . 3 (𝜑𝑁 ∈ ℤ)
8 eqid 2761 . . 3 (ℤ𝑁) = (ℤ𝑁)
9 xlimconst2.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
109ffnd 6208 . . . 4 (𝜑𝐹 Fn 𝑍)
115, 6uzssd2 40161 . . . 4 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
1210, 11fnssresd 40000 . . 3 (𝜑 → (𝐹 ↾ (ℤ𝑁)) Fn (ℤ𝑁))
13 xlimconst2.a . . 3 (𝜑𝐴 ∈ ℝ*)
14 fvres 6370 . . . . 5 (𝑘 ∈ (ℤ𝑁) → ((𝐹 ↾ (ℤ𝑁))‘𝑘) = (𝐹𝑘))
1514adantl 473 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝐹 ↾ (ℤ𝑁))‘𝑘) = (𝐹𝑘))
16 xlimconst2.e . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = 𝐴)
1715, 16eqtrd 2795 . . 3 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝐹 ↾ (ℤ𝑁))‘𝑘) = 𝐴)
181, 4, 7, 8, 12, 13, 17xlimconst 40573 . 2 (𝜑 → (𝐹 ↾ (ℤ𝑁))~~>*𝐴)
195, 9fuzxrpmcn 40576 . . 3 (𝜑𝐹 ∈ (ℝ*pm ℂ))
2019, 7xlimres 40569 . 2 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑁))~~>*𝐴))
2118, 20mpbird 247 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wnf 1857  wcel 2140  wnfc 2890   class class class wbr 4805  cres 5269  wf 6046  cfv 6050  *cxr 10286  cuz 11900  ~~>*clsxlim 40566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-pre-lttri 10223  ax-pre-lttrn 10224
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fi 8485  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-neg 10482  df-z 11591  df-uz 11901  df-topgen 16327  df-ordt 16384  df-ps 17422  df-tsr 17423  df-top 20922  df-topon 20939  df-bases 20973  df-lm 21256  df-xlim 40567
This theorem is referenced by:  climxlim2lem  40593
  Copyright terms: Public domain W3C validator