![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimconst2 | Structured version Visualization version GIF version |
Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimconst2.p | ⊢ Ⅎ𝑘𝜑 |
xlimconst2.k | ⊢ Ⅎ𝑘𝐹 |
xlimconst2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimconst2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
xlimconst2.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
xlimconst2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xlimconst2.e | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) |
Ref | Expression |
---|---|
xlimconst2 | ⊢ (𝜑 → 𝐹~~>*𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimconst2.p | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | xlimconst2.k | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
3 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑘(ℤ≥‘𝑁) | |
4 | 2, 3 | nfres 5554 | . . 3 ⊢ Ⅎ𝑘(𝐹 ↾ (ℤ≥‘𝑁)) |
5 | xlimconst2.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | xlimconst2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
7 | 5, 6 | eluzelz2d 40157 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
8 | eqid 2761 | . . 3 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
9 | xlimconst2.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
10 | 9 | ffnd 6208 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
11 | 5, 6 | uzssd2 40161 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
12 | 10, 11 | fnssresd 40000 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁)) Fn (ℤ≥‘𝑁)) |
13 | xlimconst2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
14 | fvres 6370 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = (𝐹‘𝑘)) | |
15 | 14 | adantl 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = (𝐹‘𝑘)) |
16 | xlimconst2.e | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) | |
17 | 15, 16 | eqtrd 2795 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = 𝐴) |
18 | 1, 4, 7, 8, 12, 13, 17 | xlimconst 40573 | . 2 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁))~~>*𝐴) |
19 | 5, 9 | fuzxrpmcn 40576 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
20 | 19, 7 | xlimres 40569 | . 2 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑁))~~>*𝐴)) |
21 | 18, 20 | mpbird 247 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 Ⅎwnf 1857 ∈ wcel 2140 Ⅎwnfc 2890 class class class wbr 4805 ↾ cres 5269 ⟶wf 6046 ‘cfv 6050 ℝ*cxr 10286 ℤ≥cuz 11900 ~~>*clsxlim 40566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-pre-lttri 10223 ax-pre-lttrn 10224 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-pm 8029 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-fi 8485 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-neg 10482 df-z 11591 df-uz 11901 df-topgen 16327 df-ordt 16384 df-ps 17422 df-tsr 17423 df-top 20922 df-topon 20939 df-bases 20973 df-lm 21256 df-xlim 40567 |
This theorem is referenced by: climxlim2lem 40593 |
Copyright terms: Public domain | W3C validator |