MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlemul1 Structured version   Visualization version   GIF version

Theorem xlemul1 12325
Description: Extended real version of lemul1 11081. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xlemul1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))

Proof of Theorem xlemul1
StepHypRef Expression
1 rpxr 12043 . . . 4 (𝐶 ∈ ℝ+𝐶 ∈ ℝ*)
2 rpge0 12048 . . . 4 (𝐶 ∈ ℝ+ → 0 ≤ 𝐶)
31, 2jca 501 . . 3 (𝐶 ∈ ℝ+ → (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶))
4 xlemul1a 12323 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
54ex 397 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
63, 5syl3an3 1169 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
7 simp1 1130 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ*)
813ad2ant3 1129 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ*)
9 xmulcl 12308 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
107, 8, 9syl2anc 573 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 ·e 𝐶) ∈ ℝ*)
11 simp2 1131 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ*)
12 xmulcl 12308 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*)
1311, 8, 12syl2anc 573 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵 ·e 𝐶) ∈ ℝ*)
14 rpreccl 12060 . . . . . 6 (𝐶 ∈ ℝ+ → (1 / 𝐶) ∈ ℝ+)
15143ad2ant3 1129 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (1 / 𝐶) ∈ ℝ+)
16 rpxr 12043 . . . . 5 ((1 / 𝐶) ∈ ℝ+ → (1 / 𝐶) ∈ ℝ*)
1715, 16syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (1 / 𝐶) ∈ ℝ*)
18 rpge0 12048 . . . . 5 ((1 / 𝐶) ∈ ℝ+ → 0 ≤ (1 / 𝐶))
1915, 18syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 0 ≤ (1 / 𝐶))
20 xlemul1a 12323 . . . . 5 ((((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ* ∧ ((1 / 𝐶) ∈ ℝ* ∧ 0 ≤ (1 / 𝐶))) ∧ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶)))
2120ex 397 . . . 4 (((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ* ∧ ((1 / 𝐶) ∈ ℝ* ∧ 0 ≤ (1 / 𝐶))) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶))))
2210, 13, 17, 19, 21syl112anc 1480 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶))))
23 xmulass 12322 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ* ∧ (1 / 𝐶) ∈ ℝ*) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = (𝐴 ·e (𝐶 ·e (1 / 𝐶))))
247, 8, 17, 23syl3anc 1476 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = (𝐴 ·e (𝐶 ·e (1 / 𝐶))))
25 rpre 12042 . . . . . . . . 9 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
26253ad2ant3 1129 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
2715rpred 12075 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (1 / 𝐶) ∈ ℝ)
28 rexmul 12306 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) → (𝐶 ·e (1 / 𝐶)) = (𝐶 · (1 / 𝐶)))
2926, 27, 28syl2anc 573 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐶 ·e (1 / 𝐶)) = (𝐶 · (1 / 𝐶)))
3026recnd 10274 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
31 rpne0 12051 . . . . . . . . 9 (𝐶 ∈ ℝ+𝐶 ≠ 0)
32313ad2ant3 1129 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ≠ 0)
3330, 32recidd 11002 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐶 · (1 / 𝐶)) = 1)
3429, 33eqtrd 2805 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐶 ·e (1 / 𝐶)) = 1)
3534oveq2d 6812 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 ·e (𝐶 ·e (1 / 𝐶))) = (𝐴 ·e 1))
36 xmulid1 12314 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴)
377, 36syl 17 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 ·e 1) = 𝐴)
3824, 35, 373eqtrd 2809 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = 𝐴)
39 xmulass 12322 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ* ∧ (1 / 𝐶) ∈ ℝ*) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = (𝐵 ·e (𝐶 ·e (1 / 𝐶))))
4011, 8, 17, 39syl3anc 1476 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = (𝐵 ·e (𝐶 ·e (1 / 𝐶))))
4134oveq2d 6812 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵 ·e (𝐶 ·e (1 / 𝐶))) = (𝐵 ·e 1))
42 xmulid1 12314 . . . . . 6 (𝐵 ∈ ℝ* → (𝐵 ·e 1) = 𝐵)
4311, 42syl 17 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵 ·e 1) = 𝐵)
4440, 41, 433eqtrd 2809 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = 𝐵)
4538, 44breq12d 4800 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) ↔ 𝐴𝐵))
4622, 45sylibd 229 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → 𝐴𝐵))
476, 46impbid 202 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4787  (class class class)co 6796  cr 10141  0cc0 10142  1c1 10143   · cmul 10147  *cxr 10279  cle 10281   / cdiv 10890  +crp 12035   ·e cxmu 12150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-rp 12036  df-xneg 12151  df-xmul 12153
This theorem is referenced by:  xlemul2  12326  xltmul1  12327  nmoleub2lem  23133  xrmulc1cn  30316
  Copyright terms: Public domain W3C validator