MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkouni Structured version   Visualization version   GIF version

Theorem xkouni 21450
Description: The base set of the compact-open topology. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
xkouni.1 𝐽 = (𝑆 ^ko 𝑅)
Assertion
Ref Expression
xkouni ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = 𝐽)

Proof of Theorem xkouni
Dummy variables 𝑓 𝑘 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ima0 5516 . . . . . . . . 9 (𝑓 “ ∅) = ∅
2 0ss 4005 . . . . . . . . 9 ∅ ⊆ 𝑆
31, 2eqsstri 3668 . . . . . . . 8 (𝑓 “ ∅) ⊆ 𝑆
43a1i 11 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → (𝑓 “ ∅) ⊆ 𝑆)
54ralrimiva 2995 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∀𝑓 ∈ (𝑅 Cn 𝑆)(𝑓 “ ∅) ⊆ 𝑆)
6 rabid2 3148 . . . . . 6 ((𝑅 Cn 𝑆) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ 𝑆} ↔ ∀𝑓 ∈ (𝑅 Cn 𝑆)(𝑓 “ ∅) ⊆ 𝑆)
75, 6sylibr 224 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ 𝑆})
8 eqid 2651 . . . . . 6 𝑅 = 𝑅
9 simpl 472 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑅 ∈ Top)
10 simpr 476 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑆 ∈ Top)
11 0ss 4005 . . . . . . 7 ∅ ⊆ 𝑅
1211a1i 11 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∅ ⊆ 𝑅)
13 rest0 21021 . . . . . . . 8 (𝑅 ∈ Top → (𝑅t ∅) = {∅})
1413adantr 480 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅t ∅) = {∅})
15 0cmp 21245 . . . . . . 7 {∅} ∈ Comp
1614, 15syl6eqel 2738 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅t ∅) ∈ Comp)
17 eqid 2651 . . . . . . . 8 𝑆 = 𝑆
1817topopn 20759 . . . . . . 7 (𝑆 ∈ Top → 𝑆𝑆)
1918adantl 481 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑆𝑆)
208, 9, 10, 12, 16, 19xkoopn 21440 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ ∅) ⊆ 𝑆} ∈ (𝑆 ^ko 𝑅))
217, 20eqeltrd 2730 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ (𝑆 ^ko 𝑅))
22 xkouni.1 . . . 4 𝐽 = (𝑆 ^ko 𝑅)
2321, 22syl6eleqr 2741 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ 𝐽)
24 elssuni 4499 . . 3 ((𝑅 Cn 𝑆) ∈ 𝐽 → (𝑅 Cn 𝑆) ⊆ 𝐽)
2523, 24syl 17 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ⊆ 𝐽)
26 eqid 2651 . . . . . 6 {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}
27 eqid 2651 . . . . . 6 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
288, 26, 27xkoval 21438 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
2928unieqd 4478 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))))
3022unieqi 4477 . . . 4 𝐽 = (𝑆 ^ko 𝑅)
31 ovex 6718 . . . . . . . 8 (𝑅 Cn 𝑆) ∈ V
3231pwex 4878 . . . . . . 7 𝒫 (𝑅 Cn 𝑆) ∈ V
338, 26, 27xkotf 21436 . . . . . . . 8 (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
34 frn 6091 . . . . . . . 8 ((𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}):({𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp} × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
3533, 34ax-mp 5 . . . . . . 7 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆)
3632, 35ssexi 4836 . . . . . 6 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V
37 fiuni 8375 . . . . . 6 (ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ∈ V → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
3836, 37ax-mp 5 . . . . 5 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
39 fvex 6239 . . . . . 6 (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V
40 unitg 20819 . . . . . 6 ((fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})) ∈ V → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
4139, 40ax-mp 5 . . . . 5 (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))) = (fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
4238, 41eqtr4i 2676 . . . 4 ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})))
4329, 30, 423eqtr4g 2710 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 = ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}))
4435a1i 11 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆))
45 sspwuni 4643 . . . 4 (ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ 𝒫 (𝑅 Cn 𝑆) ↔ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (𝑅 Cn 𝑆))
4644, 45sylib 208 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑅 ∣ (𝑅t 𝑥) ∈ Comp}, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (𝑅 Cn 𝑆))
4743, 46eqsstrd 3672 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 ⊆ (𝑅 Cn 𝑆))
4825, 47eqssd 3653 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  {crab 2945  Vcvv 3231  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210   cuni 4468   × cxp 5141  ran crn 5144  cima 5146  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  ficfi 8357  t crest 16128  topGenctg 16145  Topctop 20746   Cn ccn 21076  Compccmp 21237   ^ko cxko 21412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-fin 8001  df-fi 8358  df-rest 16130  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-xko 21414
This theorem is referenced by:  xkotopon  21451  xkohaus  21504  xkoptsub  21505
  Copyright terms: Public domain W3C validator