MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoptsub Structured version   Visualization version   GIF version

Theorem xkoptsub 21505
Description: The compact-open topology is finer than the product topology restricted to continuous functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoptsub.x 𝑋 = 𝑅
xkoptsub.j 𝐽 = (∏t‘(𝑋 × {𝑆}))
Assertion
Ref Expression
xkoptsub ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽t (𝑅 Cn 𝑆)) ⊆ (𝑆 ^ko 𝑅))

Proof of Theorem xkoptsub
Dummy variables 𝑓 𝑔 𝑘 𝑛 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkoptsub.j . . . . 5 𝐽 = (∏t‘(𝑋 × {𝑆}))
2 xkoptsub.x . . . . . . . . 9 𝑋 = 𝑅
32topopn 20759 . . . . . . . 8 (𝑅 ∈ Top → 𝑋𝑅)
43adantr 480 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑋𝑅)
5 fconstg 6130 . . . . . . . . 9 (𝑆 ∈ Top → (𝑋 × {𝑆}):𝑋⟶{𝑆})
65adantl 481 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × {𝑆}):𝑋⟶{𝑆})
7 ffn 6083 . . . . . . . 8 ((𝑋 × {𝑆}):𝑋⟶{𝑆} → (𝑋 × {𝑆}) Fn 𝑋)
86, 7syl 17 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × {𝑆}) Fn 𝑋)
9 eqid 2651 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))}
109ptval 21421 . . . . . . 7 ((𝑋𝑅 ∧ (𝑋 × {𝑆}) Fn 𝑋) → (∏t‘(𝑋 × {𝑆})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))}))
114, 8, 10syl2anc 694 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (∏t‘(𝑋 × {𝑆})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))}))
12 simpr 476 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑆 ∈ Top)
1312snssd 4372 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑆} ⊆ Top)
146, 13fssd 6095 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × {𝑆}):𝑋⟶Top)
15 eqid 2651 . . . . . . . . . 10 X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) = X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)
169, 15ptbasfi 21432 . . . . . . . . 9 ((𝑋𝑅 ∧ (𝑋 × {𝑆}):𝑋⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))} = (fi‘({X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} ∪ ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)))))
174, 14, 16syl2anc 694 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))} = (fi‘({X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} ∪ ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)))))
18 fvconst2g 6508 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Top ∧ 𝑛𝑋) → ((𝑋 × {𝑆})‘𝑛) = 𝑆)
1918adantll 750 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑛𝑋) → ((𝑋 × {𝑆})‘𝑛) = 𝑆)
2019unieqd 4478 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑛𝑋) → ((𝑋 × {𝑆})‘𝑛) = 𝑆)
2120ixpeq2dva 7965 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) = X𝑛𝑋 𝑆)
22 eqid 2651 . . . . . . . . . . . . . 14 𝑆 = 𝑆
2322topopn 20759 . . . . . . . . . . . . 13 (𝑆 ∈ Top → 𝑆𝑆)
24 ixpconstg 7959 . . . . . . . . . . . . 13 ((𝑋𝑅 𝑆𝑆) → X𝑛𝑋 𝑆 = ( 𝑆𝑚 𝑋))
253, 23, 24syl2an 493 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → X𝑛𝑋 𝑆 = ( 𝑆𝑚 𝑋))
2621, 25eqtrd 2685 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) = ( 𝑆𝑚 𝑋))
2726sneqd 4222 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} = {( 𝑆𝑚 𝑋)})
28 eqid 2651 . . . . . . . . . . . 12 𝑋 = 𝑋
29 fvconst2g 6508 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Top ∧ 𝑘𝑋) → ((𝑋 × {𝑆})‘𝑘) = 𝑆)
3029adantll 750 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → ((𝑋 × {𝑆})‘𝑘) = 𝑆)
3126adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) = ( 𝑆𝑚 𝑋))
3231mpteq1d 4771 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → (𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) = (𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)))
3332cnveqd 5330 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → (𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) = (𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)))
3433imaeq1d 5500 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))
3534ralrimivw 2996 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))
3630, 35jca 553 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → (((𝑋 × {𝑆})‘𝑘) = 𝑆 ∧ ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
3736ralrimiva 2995 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∀𝑘𝑋 (((𝑋 × {𝑆})‘𝑘) = 𝑆 ∧ ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
38 mpt2eq123 6756 . . . . . . . . . . . 12 ((𝑋 = 𝑋 ∧ ∀𝑘𝑋 (((𝑋 × {𝑆})‘𝑘) = 𝑆 ∧ ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) → (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
3928, 37, 38sylancr 696 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
4039rneqd 5385 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
4127, 40uneq12d 3801 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ({X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} ∪ ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢))) = ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))
4241fveq2d 6233 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (fi‘({X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} ∪ ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)))) = (fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))))
4317, 42eqtrd 2685 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))} = (fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))))
4443fveq2d 6233 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))}) = (topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))))
4511, 44eqtrd 2685 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (∏t‘(𝑋 × {𝑆})) = (topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))))
461, 45syl5eq 2697 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 = (topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))))
4746oveq1d 6705 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽t (𝑅 Cn 𝑆)) = ((topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆)))
48 firest 16140 . . . . 5 (fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆))) = ((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆))
4948fveq2i 6232 . . . 4 (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) = (topGen‘((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆)))
50 fvex 6239 . . . . 5 (fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ∈ V
51 ovex 6718 . . . . 5 (𝑅 Cn 𝑆) ∈ V
52 tgrest 21011 . . . . 5 (((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ∈ V ∧ (𝑅 Cn 𝑆) ∈ V) → (topGen‘((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆))) = ((topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆)))
5350, 51, 52mp2an 708 . . . 4 (topGen‘((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆))) = ((topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆))
5449, 53eqtri 2673 . . 3 (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) = ((topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆))
5547, 54syl6eqr 2703 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽t (𝑅 Cn 𝑆)) = (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))))
56 xkotop 21439 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ Top)
57 snex 4938 . . . . . 6 {( 𝑆𝑚 𝑋)} ∈ V
58 mpt2exga 7291 . . . . . . . 8 ((𝑋𝑅𝑆 ∈ Top) → (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
593, 58sylan 487 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
60 rnexg 7140 . . . . . . 7 ((𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V → ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
6159, 60syl 17 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
62 unexg 7001 . . . . . 6 (({( 𝑆𝑚 𝑋)} ∈ V ∧ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V) → ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
6357, 61, 62sylancr 696 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
64 restval 16134 . . . . 5 ((({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ∈ V ∧ (𝑅 Cn 𝑆) ∈ V) → (({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) = ran (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))))
6563, 51, 64sylancl 695 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) = ran (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))))
66 elun 3786 . . . . . . 7 (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↔ (𝑥 ∈ {( 𝑆𝑚 𝑋)} ∨ 𝑥 ∈ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))
672, 22cnf 21098 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑅 Cn 𝑆) → 𝑥:𝑋 𝑆)
68 elmapg 7912 . . . . . . . . . . . . . . 15 (( 𝑆𝑆𝑋𝑅) → (𝑥 ∈ ( 𝑆𝑚 𝑋) ↔ 𝑥:𝑋 𝑆))
6923, 3, 68syl2anr 494 . . . . . . . . . . . . . 14 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑥 ∈ ( 𝑆𝑚 𝑋) ↔ 𝑥:𝑋 𝑆))
7067, 69syl5ibr 236 . . . . . . . . . . . . 13 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑥 ∈ (𝑅 Cn 𝑆) → 𝑥 ∈ ( 𝑆𝑚 𝑋)))
7170ssrdv 3642 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ⊆ ( 𝑆𝑚 𝑋))
7271adantr 480 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑅 Cn 𝑆) ⊆ ( 𝑆𝑚 𝑋))
73 elsni 4227 . . . . . . . . . . . 12 (𝑥 ∈ {( 𝑆𝑚 𝑋)} → 𝑥 = ( 𝑆𝑚 𝑋))
7473adantl 481 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → 𝑥 = ( 𝑆𝑚 𝑋))
7572, 74sseqtr4d 3675 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑅 Cn 𝑆) ⊆ 𝑥)
76 sseqin2 3850 . . . . . . . . . 10 ((𝑅 Cn 𝑆) ⊆ 𝑥 ↔ (𝑥 ∩ (𝑅 Cn 𝑆)) = (𝑅 Cn 𝑆))
7775, 76sylib 208 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑥 ∩ (𝑅 Cn 𝑆)) = (𝑅 Cn 𝑆))
78 eqid 2651 . . . . . . . . . . . 12 (𝑆 ^ko 𝑅) = (𝑆 ^ko 𝑅)
7978xkouni 21450 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = (𝑆 ^ko 𝑅))
80 eqid 2651 . . . . . . . . . . . . 13 (𝑆 ^ko 𝑅) = (𝑆 ^ko 𝑅)
8180topopn 20759 . . . . . . . . . . . 12 ((𝑆 ^ko 𝑅) ∈ Top → (𝑆 ^ko 𝑅) ∈ (𝑆 ^ko 𝑅))
8256, 81syl 17 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ (𝑆 ^ko 𝑅))
8379, 82eqeltrd 2730 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ (𝑆 ^ko 𝑅))
8483adantr 480 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑅 Cn 𝑆) ∈ (𝑆 ^ko 𝑅))
8577, 84eqeltrd 2730 . . . . . . . 8 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
86 eqid 2651 . . . . . . . . . . 11 (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))
8786rnmpt2 6812 . . . . . . . . . 10 ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) = {𝑥 ∣ ∃𝑘𝑋𝑢𝑆 𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)}
8887abeq2i 2764 . . . . . . . . 9 (𝑥 ∈ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ↔ ∃𝑘𝑋𝑢𝑆 𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))
89 cnvresima 5661 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) ↾ (𝑅 Cn 𝑆)) “ 𝑢) = (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆))
9071adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑅 Cn 𝑆) ⊆ ( 𝑆𝑚 𝑋))
9190resmptd 5487 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) ↾ (𝑅 Cn 𝑆)) = (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)))
9291cnveqd 5330 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) ↾ (𝑅 Cn 𝑆)) = (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)))
9392imaeq1d 5500 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) ↾ (𝑅 Cn 𝑆)) “ 𝑢) = ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢))
9489, 93syl5eqr 2699 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) = ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢))
95 fvex 6239 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝑘) ∈ V
9695rgenw 2953 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ (𝑅 Cn 𝑆)(𝑤𝑘) ∈ V
97 eqid 2651 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) = (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))
9897fnmpt 6058 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ (𝑅 Cn 𝑆)(𝑤𝑘) ∈ V → (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) Fn (𝑅 Cn 𝑆))
9996, 98mp1i 13 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) Fn (𝑅 Cn 𝑆))
100 elpreima 6377 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) Fn (𝑅 Cn 𝑆) → (𝑓 ∈ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢)))
10199, 100syl 17 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑓 ∈ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢)))
102 fveq1 6228 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑓 → (𝑤𝑘) = (𝑓𝑘))
103 fvex 6239 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑘) ∈ V
104102, 97, 103fvmpt 6321 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ (𝑅 Cn 𝑆) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) = (𝑓𝑘))
105104adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) = (𝑓𝑘))
106105eleq1d 2715 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → (((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢 ↔ (𝑓𝑘) ∈ 𝑢))
107103snss 4348 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑘) ∈ 𝑢 ↔ {(𝑓𝑘)} ⊆ 𝑢)
10890sselda 3636 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → 𝑓 ∈ ( 𝑆𝑚 𝑋))
109 elmapi 7921 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ ( 𝑆𝑚 𝑋) → 𝑓:𝑋 𝑆)
110 ffn 6083 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝑋 𝑆𝑓 Fn 𝑋)
111108, 109, 1103syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → 𝑓 Fn 𝑋)
112 simplrl 817 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → 𝑘𝑋)
113 fnsnfv 6297 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓 Fn 𝑋𝑘𝑋) → {(𝑓𝑘)} = (𝑓 “ {𝑘}))
114111, 112, 113syl2anc 694 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → {(𝑓𝑘)} = (𝑓 “ {𝑘}))
115114sseq1d 3665 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → ({(𝑓𝑘)} ⊆ 𝑢 ↔ (𝑓 “ {𝑘}) ⊆ 𝑢))
116107, 115syl5bb 272 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → ((𝑓𝑘) ∈ 𝑢 ↔ (𝑓 “ {𝑘}) ⊆ 𝑢))
117106, 116bitrd 268 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → (((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢 ↔ (𝑓 “ {𝑘}) ⊆ 𝑢))
118117pm5.32da 674 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑓 ∈ (𝑅 Cn 𝑆) ∧ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)))
119101, 118bitrd 268 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑓 ∈ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)))
120119abbi2dv 2771 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) = {𝑓 ∣ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)})
121 df-rab 2950 . . . . . . . . . . . . . . 15 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢} = {𝑓 ∣ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)}
122120, 121syl6eqr 2703 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢})
12394, 122eqtrd 2685 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢})
124 simpll 805 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑅 ∈ Top)
12512adantr 480 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑆 ∈ Top)
126 simprl 809 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑘𝑋)
127126snssd 4372 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → {𝑘} ⊆ 𝑋)
1282toptopon 20770 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
129124, 128sylib 208 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑅 ∈ (TopOn‘𝑋))
130 restsn2 21023 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝑅t {𝑘}) = 𝒫 {𝑘})
131129, 126, 130syl2anc 694 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑅t {𝑘}) = 𝒫 {𝑘})
132 snfi 8079 . . . . . . . . . . . . . . . 16 {𝑘} ∈ Fin
133 discmp 21249 . . . . . . . . . . . . . . . 16 ({𝑘} ∈ Fin ↔ 𝒫 {𝑘} ∈ Comp)
134132, 133mpbi 220 . . . . . . . . . . . . . . 15 𝒫 {𝑘} ∈ Comp
135131, 134syl6eqel 2738 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑅t {𝑘}) ∈ Comp)
136 simprr 811 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑢𝑆)
1372, 124, 125, 127, 135, 136xkoopn 21440 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢} ∈ (𝑆 ^ko 𝑅))
138123, 137eqeltrd 2730 . . . . . . . . . . . 12 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
139 ineq1 3840 . . . . . . . . . . . . 13 (𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) → (𝑥 ∩ (𝑅 Cn 𝑆)) = (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)))
140139eleq1d 2715 . . . . . . . . . . . 12 (𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) → ((𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅) ↔ (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅)))
141138, 140syl5ibrcom 237 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅)))
142141rexlimdvva 3067 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (∃𝑘𝑋𝑢𝑆 𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅)))
143142imp 444 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ ∃𝑘𝑋𝑢𝑆 𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
14488, 143sylan2b 491 . . . . . . . 8 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
14585, 144jaodan 843 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑥 ∈ {( 𝑆𝑚 𝑋)} ∨ 𝑥 ∈ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
14666, 145sylan2b 491 . . . . . 6 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
147 eqid 2651 . . . . . 6 (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))) = (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆)))
148146, 147fmptd 6425 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))):({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))⟶(𝑆 ^ko 𝑅))
149 frn 6091 . . . . 5 ((𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))):({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))⟶(𝑆 ^ko 𝑅) → ran (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))) ⊆ (𝑆 ^ko 𝑅))
150148, 149syl 17 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))) ⊆ (𝑆 ^ko 𝑅))
15165, 150eqsstrd 3672 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ^ko 𝑅))
152 tgfiss 20843 . . 3 (((𝑆 ^ko 𝑅) ∈ Top ∧ (({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ^ko 𝑅)) → (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) ⊆ (𝑆 ^ko 𝑅))
15356, 151, 152syl2anc 694 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) ⊆ (𝑆 ^ko 𝑅))
15455, 153eqsstrd 3672 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽t (𝑅 Cn 𝑆)) ⊆ (𝑆 ^ko 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  cdif 3604  cun 3605  cin 3606  wss 3607  𝒫 cpw 4191  {csn 4210   cuni 4468  cmpt 4762   × cxp 5141  ccnv 5142  ran crn 5144  cres 5145  cima 5146   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899  Xcixp 7950  Fincfn 7997  ficfi 8357  t crest 16128  topGenctg 16145  tcpt 16146  Topctop 20746  TopOnctopon 20763   Cn ccn 21076  Compccmp 21237   ^ko cxko 21412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-rest 16130  df-topgen 16151  df-pt 16152  df-top 20747  df-topon 20764  df-bases 20798  df-cn 21079  df-cmp 21238  df-xko 21414
This theorem is referenced by:  xkopt  21506  xkopjcn  21507
  Copyright terms: Public domain W3C validator