MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkopt Structured version   Visualization version   GIF version

Theorem xkopt 21506
Description: The compact-open topology on a discrete set coincides with the product topology where all the factors are the same. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
xkopt ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝑅 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝑅})))

Proof of Theorem xkopt
Dummy variables 𝑓 𝑘 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 20847 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
21adantl 481 . . . 4 ((𝑅 ∈ Top ∧ 𝐴𝑉) → 𝒫 𝐴 ∈ Top)
3 simpl 472 . . . 4 ((𝑅 ∈ Top ∧ 𝐴𝑉) → 𝑅 ∈ Top)
4 unipw 4948 . . . . . 6 𝒫 𝐴 = 𝐴
54eqcomi 2660 . . . . 5 𝐴 = 𝒫 𝐴
6 eqid 2651 . . . . 5 {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}
7 eqid 2651 . . . . 5 (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣})
85, 6, 7xkoval 21438 . . . 4 ((𝒫 𝐴 ∈ Top ∧ 𝑅 ∈ Top) → (𝑅 ^ko 𝒫 𝐴) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}))))
92, 3, 8syl2anc 694 . . 3 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝑅 ^ko 𝒫 𝐴) = (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}))))
10 simpr 476 . . . . 5 ((𝑅 ∈ Top ∧ 𝐴𝑉) → 𝐴𝑉)
11 fconst6g 6132 . . . . . 6 (𝑅 ∈ Top → (𝐴 × {𝑅}):𝐴⟶Top)
1211adantr 480 . . . . 5 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝐴 × {𝑅}):𝐴⟶Top)
13 pttop 21433 . . . . 5 ((𝐴𝑉 ∧ (𝐴 × {𝑅}):𝐴⟶Top) → (∏t‘(𝐴 × {𝑅})) ∈ Top)
1410, 12, 13syl2anc 694 . . . 4 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (∏t‘(𝐴 × {𝑅})) ∈ Top)
15 elpwi 4201 . . . . . . . . . . . . . 14 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
16 restdis 21030 . . . . . . . . . . . . . 14 ((𝐴𝑉𝑥𝐴) → (𝒫 𝐴t 𝑥) = 𝒫 𝑥)
1715, 16sylan2 490 . . . . . . . . . . . . 13 ((𝐴𝑉𝑥 ∈ 𝒫 𝐴) → (𝒫 𝐴t 𝑥) = 𝒫 𝑥)
1817adantll 750 . . . . . . . . . . . 12 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 𝐴) → (𝒫 𝐴t 𝑥) = 𝒫 𝑥)
1918eleq1d 2715 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝒫 𝐴t 𝑥) ∈ Comp ↔ 𝒫 𝑥 ∈ Comp))
20 discmp 21249 . . . . . . . . . . 11 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Comp)
2119, 20syl6bbr 278 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ 𝑥 ∈ 𝒫 𝐴) → ((𝒫 𝐴t 𝑥) ∈ Comp ↔ 𝑥 ∈ Fin))
2221rabbidva 3219 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝐴𝑉) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp} = {𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin})
23 dfin5 3615 . . . . . . . . 9 (𝒫 𝐴 ∩ Fin) = {𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin}
2422, 23syl6eqr 2703 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝐴𝑉) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp} = (𝒫 𝐴 ∩ Fin))
25 eqidd 2652 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝐴𝑉) → 𝑅 = 𝑅)
26 eqid 2651 . . . . . . . . . . 11 𝑅 = 𝑅
2726toptopon 20770 . . . . . . . . . 10 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
28 cndis 21143 . . . . . . . . . . 11 ((𝐴𝑉𝑅 ∈ (TopOn‘ 𝑅)) → (𝒫 𝐴 Cn 𝑅) = ( 𝑅𝑚 𝐴))
2928ancoms 468 . . . . . . . . . 10 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝐴𝑉) → (𝒫 𝐴 Cn 𝑅) = ( 𝑅𝑚 𝐴))
3027, 29sylanb 488 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴 Cn 𝑅) = ( 𝑅𝑚 𝐴))
31 rabeq 3223 . . . . . . . . 9 ((𝒫 𝐴 Cn 𝑅) = ( 𝑅𝑚 𝐴) → {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣} = {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣})
3230, 31syl 17 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝐴𝑉) → {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣} = {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣})
3324, 25, 32mpt2eq123dv 6759 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣𝑅 ↦ {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}))
3433rneqd 5385 . . . . . 6 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}) = ran (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣𝑅 ↦ {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}))
35 eqid 2651 . . . . . . 7 (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣𝑅 ↦ {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}) = (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣𝑅 ↦ {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣})
3635rnmpt2 6812 . . . . . 6 ran (𝑘 ∈ (𝒫 𝐴 ∩ Fin), 𝑣𝑅 ↦ {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣𝑅 𝑥 = {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}}
3734, 36syl6eq 2701 . . . . 5 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}) = {𝑥 ∣ ∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣𝑅 𝑥 = {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}})
38 elmapi 7921 . . . . . . . . . . . 12 (𝑓 ∈ ( 𝑅𝑚 𝐴) → 𝑓:𝐴 𝑅)
39 eleq2 2719 . . . . . . . . . . . . . . . . 17 (𝑣 = if(𝑥𝑘, 𝑣, 𝑅) → ((𝑓𝑥) ∈ 𝑣 ↔ (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)))
4039imbi2d 329 . . . . . . . . . . . . . . . 16 (𝑣 = if(𝑥𝑘, 𝑣, 𝑅) → ((𝑥𝐴 → (𝑓𝑥) ∈ 𝑣) ↔ (𝑥𝐴 → (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅))))
4140bibi1d 332 . . . . . . . . . . . . . . 15 (𝑣 = if(𝑥𝑘, 𝑣, 𝑅) → (((𝑥𝐴 → (𝑓𝑥) ∈ 𝑣) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣)) ↔ ((𝑥𝐴 → (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣))))
42 eleq2 2719 . . . . . . . . . . . . . . . . 17 ( 𝑅 = if(𝑥𝑘, 𝑣, 𝑅) → ((𝑓𝑥) ∈ 𝑅 ↔ (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)))
4342imbi2d 329 . . . . . . . . . . . . . . . 16 ( 𝑅 = if(𝑥𝑘, 𝑣, 𝑅) → ((𝑥𝐴 → (𝑓𝑥) ∈ 𝑅) ↔ (𝑥𝐴 → (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅))))
4443bibi1d 332 . . . . . . . . . . . . . . 15 ( 𝑅 = if(𝑥𝑘, 𝑣, 𝑅) → (((𝑥𝐴 → (𝑓𝑥) ∈ 𝑅) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣)) ↔ ((𝑥𝐴 → (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣))))
45 inss1 3866 . . . . . . . . . . . . . . . . . . . . 21 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
46 simprl 809 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝑘 ∈ (𝒫 𝐴 ∩ Fin))
4745, 46sseldi 3634 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝑘 ∈ 𝒫 𝐴)
4847elpwid 4203 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝑘𝐴)
4948adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → 𝑘𝐴)
5049sselda 3636 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ 𝑥𝑘) → 𝑥𝐴)
51 simpr 476 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ 𝑥𝑘) → 𝑥𝑘)
5250, 512thd 255 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ 𝑥𝑘) → (𝑥𝐴𝑥𝑘))
5352imbi1d 330 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ 𝑥𝑘) → ((𝑥𝐴 → (𝑓𝑥) ∈ 𝑣) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣)))
54 ffvelrn 6397 . . . . . . . . . . . . . . . . . . 19 ((𝑓:𝐴 𝑅𝑥𝐴) → (𝑓𝑥) ∈ 𝑅)
5554ex 449 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴 𝑅 → (𝑥𝐴 → (𝑓𝑥) ∈ 𝑅))
5655adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → (𝑥𝐴 → (𝑓𝑥) ∈ 𝑅))
5756adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ ¬ 𝑥𝑘) → (𝑥𝐴 → (𝑓𝑥) ∈ 𝑅))
58 pm2.21 120 . . . . . . . . . . . . . . . . 17 𝑥𝑘 → (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣))
5958adantl 481 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ ¬ 𝑥𝑘) → (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣))
6057, 592thd 255 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) ∧ ¬ 𝑥𝑘) → ((𝑥𝐴 → (𝑓𝑥) ∈ 𝑅) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣)))
6141, 44, 53, 60ifbothda 4156 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → ((𝑥𝐴 → (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)) ↔ (𝑥𝑘 → (𝑓𝑥) ∈ 𝑣)))
6261ralbidv2 3013 . . . . . . . . . . . . 13 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → (∀𝑥𝐴 (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅) ↔ ∀𝑥𝑘 (𝑓𝑥) ∈ 𝑣))
63 ffn 6083 . . . . . . . . . . . . . . 15 (𝑓:𝐴 𝑅𝑓 Fn 𝐴)
6463adantl 481 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → 𝑓 Fn 𝐴)
65 vex 3234 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
6665elixp 7957 . . . . . . . . . . . . . . 15 (𝑓X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)))
6766baib 964 . . . . . . . . . . . . . 14 (𝑓 Fn 𝐴 → (𝑓X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)))
6864, 67syl 17 . . . . . . . . . . . . 13 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → (𝑓X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ↔ ∀𝑥𝐴 (𝑓𝑥) ∈ if(𝑥𝑘, 𝑣, 𝑅)))
69 ffun 6086 . . . . . . . . . . . . . . 15 (𝑓:𝐴 𝑅 → Fun 𝑓)
7069adantl 481 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → Fun 𝑓)
71 fdm 6089 . . . . . . . . . . . . . . . 16 (𝑓:𝐴 𝑅 → dom 𝑓 = 𝐴)
7271adantl 481 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → dom 𝑓 = 𝐴)
7349, 72sseqtr4d 3675 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → 𝑘 ⊆ dom 𝑓)
74 funimass4 6286 . . . . . . . . . . . . . 14 ((Fun 𝑓𝑘 ⊆ dom 𝑓) → ((𝑓𝑘) ⊆ 𝑣 ↔ ∀𝑥𝑘 (𝑓𝑥) ∈ 𝑣))
7570, 73, 74syl2anc 694 . . . . . . . . . . . . 13 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → ((𝑓𝑘) ⊆ 𝑣 ↔ ∀𝑥𝑘 (𝑓𝑥) ∈ 𝑣))
7662, 68, 753bitr4d 300 . . . . . . . . . . . 12 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓:𝐴 𝑅) → (𝑓X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ↔ (𝑓𝑘) ⊆ 𝑣))
7738, 76sylan2 490 . . . . . . . . . . 11 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑓 ∈ ( 𝑅𝑚 𝐴)) → (𝑓X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ↔ (𝑓𝑘) ⊆ 𝑣))
7877rabbi2dva 3854 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → (( 𝑅𝑚 𝐴) ∩ X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅)) = {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣})
79 elssuni 4499 . . . . . . . . . . . . . . . 16 (𝑣𝑅𝑣 𝑅)
8079ad2antll 765 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝑣 𝑅)
81 ssid 3657 . . . . . . . . . . . . . . 15 𝑅 𝑅
82 sseq1 3659 . . . . . . . . . . . . . . . 16 (𝑣 = if(𝑥𝑘, 𝑣, 𝑅) → (𝑣 𝑅 ↔ if(𝑥𝑘, 𝑣, 𝑅) ⊆ 𝑅))
83 sseq1 3659 . . . . . . . . . . . . . . . 16 ( 𝑅 = if(𝑥𝑘, 𝑣, 𝑅) → ( 𝑅 𝑅 ↔ if(𝑥𝑘, 𝑣, 𝑅) ⊆ 𝑅))
8482, 83ifboth 4157 . . . . . . . . . . . . . . 15 ((𝑣 𝑅 𝑅 𝑅) → if(𝑥𝑘, 𝑣, 𝑅) ⊆ 𝑅)
8580, 81, 84sylancl 695 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → if(𝑥𝑘, 𝑣, 𝑅) ⊆ 𝑅)
8685ralrimivw 2996 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → ∀𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ⊆ 𝑅)
87 ss2ixp 7963 . . . . . . . . . . . . 13 (∀𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ⊆ 𝑅X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ⊆ X𝑥𝐴 𝑅)
8886, 87syl 17 . . . . . . . . . . . 12 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ⊆ X𝑥𝐴 𝑅)
89 simplr 807 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝐴𝑉)
90 uniexg 6997 . . . . . . . . . . . . . 14 (𝑅 ∈ Top → 𝑅 ∈ V)
9190ad2antrr 762 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝑅 ∈ V)
92 ixpconstg 7959 . . . . . . . . . . . . 13 ((𝐴𝑉 𝑅 ∈ V) → X𝑥𝐴 𝑅 = ( 𝑅𝑚 𝐴))
9389, 91, 92syl2anc 694 . . . . . . . . . . . 12 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → X𝑥𝐴 𝑅 = ( 𝑅𝑚 𝐴))
9488, 93sseqtrd 3674 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ⊆ ( 𝑅𝑚 𝐴))
95 sseqin2 3850 . . . . . . . . . . 11 (X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ⊆ ( 𝑅𝑚 𝐴) ↔ (( 𝑅𝑚 𝐴) ∩ X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅)) = X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅))
9694, 95sylib 208 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → (( 𝑅𝑚 𝐴) ∩ X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅)) = X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅))
9778, 96eqtr3d 2687 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣} = X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅))
9811ad2antrr 762 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → (𝐴 × {𝑅}):𝐴⟶Top)
99 inss2 3867 . . . . . . . . . . 11 (𝒫 𝐴 ∩ Fin) ⊆ Fin
10099, 46sseldi 3634 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝑘 ∈ Fin)
101 simplrr 818 . . . . . . . . . . . 12 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥𝐴) → 𝑣𝑅)
10226topopn 20759 . . . . . . . . . . . . 13 (𝑅 ∈ Top → 𝑅𝑅)
103102ad3antrrr 766 . . . . . . . . . . . 12 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥𝐴) → 𝑅𝑅)
104101, 103ifcld 4164 . . . . . . . . . . 11 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥𝐴) → if(𝑥𝑘, 𝑣, 𝑅) ∈ 𝑅)
105 simpll 805 . . . . . . . . . . . 12 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → 𝑅 ∈ Top)
106 fvconst2g 6508 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑥𝐴) → ((𝐴 × {𝑅})‘𝑥) = 𝑅)
107105, 106sylan 487 . . . . . . . . . . 11 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥𝐴) → ((𝐴 × {𝑅})‘𝑥) = 𝑅)
108104, 107eleqtrrd 2733 . . . . . . . . . 10 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥𝐴) → if(𝑥𝑘, 𝑣, 𝑅) ∈ ((𝐴 × {𝑅})‘𝑥))
109 eldifn 3766 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴𝑘) → ¬ 𝑥𝑘)
110109iffalsed 4130 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝑘) → if(𝑥𝑘, 𝑣, 𝑅) = 𝑅)
111110adantl 481 . . . . . . . . . . 11 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥 ∈ (𝐴𝑘)) → if(𝑥𝑘, 𝑣, 𝑅) = 𝑅)
112 eldifi 3765 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴𝑘) → 𝑥𝐴)
113112, 107sylan2 490 . . . . . . . . . . . 12 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥 ∈ (𝐴𝑘)) → ((𝐴 × {𝑅})‘𝑥) = 𝑅)
114113unieqd 4478 . . . . . . . . . . 11 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥 ∈ (𝐴𝑘)) → ((𝐴 × {𝑅})‘𝑥) = 𝑅)
115111, 114eqtr4d 2688 . . . . . . . . . 10 ((((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) ∧ 𝑥 ∈ (𝐴𝑘)) → if(𝑥𝑘, 𝑣, 𝑅) = ((𝐴 × {𝑅})‘𝑥))
11689, 98, 100, 108, 115ptopn 21434 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → X𝑥𝐴 if(𝑥𝑘, 𝑣, 𝑅) ∈ (∏t‘(𝐴 × {𝑅})))
11797, 116eqeltrd 2730 . . . . . . . 8 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣} ∈ (∏t‘(𝐴 × {𝑅})))
118 eleq1 2718 . . . . . . . 8 (𝑥 = {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣} → (𝑥 ∈ (∏t‘(𝐴 × {𝑅})) ↔ {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣} ∈ (∏t‘(𝐴 × {𝑅}))))
119117, 118syl5ibrcom 237 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝐴𝑉) ∧ (𝑘 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑣𝑅)) → (𝑥 = {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣} → 𝑥 ∈ (∏t‘(𝐴 × {𝑅}))))
120119rexlimdvva 3067 . . . . . 6 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣𝑅 𝑥 = {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣} → 𝑥 ∈ (∏t‘(𝐴 × {𝑅}))))
121120abssdv 3709 . . . . 5 ((𝑅 ∈ Top ∧ 𝐴𝑉) → {𝑥 ∣ ∃𝑘 ∈ (𝒫 𝐴 ∩ Fin)∃𝑣𝑅 𝑥 = {𝑓 ∈ ( 𝑅𝑚 𝐴) ∣ (𝑓𝑘) ⊆ 𝑣}} ⊆ (∏t‘(𝐴 × {𝑅})))
12237, 121eqsstrd 3672 . . . 4 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (∏t‘(𝐴 × {𝑅})))
123 tgfiss 20843 . . . 4 (((∏t‘(𝐴 × {𝑅})) ∈ Top ∧ ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}) ⊆ (∏t‘(𝐴 × {𝑅}))) → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}))) ⊆ (∏t‘(𝐴 × {𝑅})))
12414, 122, 123syl2anc 694 . . 3 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝒫 𝐴t 𝑥) ∈ Comp}, 𝑣𝑅 ↦ {𝑓 ∈ (𝒫 𝐴 Cn 𝑅) ∣ (𝑓𝑘) ⊆ 𝑣}))) ⊆ (∏t‘(𝐴 × {𝑅})))
1259, 124eqsstrd 3672 . 2 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝑅 ^ko 𝒫 𝐴) ⊆ (∏t‘(𝐴 × {𝑅})))
126 eqid 2651 . . . . . . . 8 (∏t‘(𝐴 × {𝑅})) = (∏t‘(𝐴 × {𝑅}))
127126, 26ptuniconst 21449 . . . . . . 7 ((𝐴𝑉𝑅 ∈ Top) → ( 𝑅𝑚 𝐴) = (∏t‘(𝐴 × {𝑅})))
128127ancoms 468 . . . . . 6 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ( 𝑅𝑚 𝐴) = (∏t‘(𝐴 × {𝑅})))
12930, 128eqtrd 2685 . . . . 5 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝒫 𝐴 Cn 𝑅) = (∏t‘(𝐴 × {𝑅})))
130129oveq2d 6706 . . . 4 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) = ((∏t‘(𝐴 × {𝑅})) ↾t (∏t‘(𝐴 × {𝑅}))))
131 eqid 2651 . . . . . 6 (∏t‘(𝐴 × {𝑅})) = (∏t‘(𝐴 × {𝑅}))
132131restid 16141 . . . . 5 ((∏t‘(𝐴 × {𝑅})) ∈ Top → ((∏t‘(𝐴 × {𝑅})) ↾t (∏t‘(𝐴 × {𝑅}))) = (∏t‘(𝐴 × {𝑅})))
13314, 132syl 17 . . . 4 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (∏t‘(𝐴 × {𝑅}))) = (∏t‘(𝐴 × {𝑅})))
134130, 133eqtrd 2685 . . 3 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) = (∏t‘(𝐴 × {𝑅})))
1355, 126xkoptsub 21505 . . . 4 ((𝒫 𝐴 ∈ Top ∧ 𝑅 ∈ Top) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) ⊆ (𝑅 ^ko 𝒫 𝐴))
1362, 3, 135syl2anc 694 . . 3 ((𝑅 ∈ Top ∧ 𝐴𝑉) → ((∏t‘(𝐴 × {𝑅})) ↾t (𝒫 𝐴 Cn 𝑅)) ⊆ (𝑅 ^ko 𝒫 𝐴))
137134, 136eqsstr3d 3673 . 2 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (∏t‘(𝐴 × {𝑅})) ⊆ (𝑅 ^ko 𝒫 𝐴))
138125, 137eqssd 3653 1 ((𝑅 ∈ Top ∧ 𝐴𝑉) → (𝑅 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝑅})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  {cab 2637  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  cdif 3604  cin 3606  wss 3607  ifcif 4119  𝒫 cpw 4191  {csn 4210   cuni 4468   × cxp 5141  dom cdm 5143  ran crn 5144  cima 5146  Fun wfun 5920   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑚 cmap 7899  Xcixp 7950  Fincfn 7997  ficfi 8357  t crest 16128  topGenctg 16145  tcpt 16146  Topctop 20746  TopOnctopon 20763   Cn ccn 21076  Compccmp 21237   ^ko cxko 21412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-rest 16130  df-topgen 16151  df-pt 16152  df-top 20747  df-topon 20764  df-bases 20798  df-cn 21079  df-cmp 21238  df-xko 21414
This theorem is referenced by:  tmdgsum  21946  tmdgsum2  21947  symgtgp  21952
  Copyright terms: Public domain W3C validator