![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xdivval | Structured version Visualization version GIF version |
Description: Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is nonzero. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
Ref | Expression |
---|---|
xdivval | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4350 | . . 3 ⊢ (𝐵 ∈ (ℝ ∖ {0}) ↔ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
2 | simpl 472 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 ∈ ℝ*) → 𝑦 = 𝐴) | |
3 | 2 | eqeq2d 2661 | . . . . 5 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝑦 ↔ (𝑧 ·e 𝑥) = 𝐴)) |
4 | 3 | riotabidva 6667 | . . . 4 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦) = (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴)) |
5 | simpl 472 | . . . . . . 7 ⊢ ((𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ*) → 𝑧 = 𝐵) | |
6 | 5 | oveq1d 6705 | . . . . . 6 ⊢ ((𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ*) → (𝑧 ·e 𝑥) = (𝐵 ·e 𝑥)) |
7 | 6 | eqeq1d 2653 | . . . . 5 ⊢ ((𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e 𝑥) = 𝐴)) |
8 | 7 | riotabidva 6667 | . . . 4 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
9 | df-xdiv 29754 | . . . 4 ⊢ /𝑒 = (𝑦 ∈ ℝ*, 𝑧 ∈ (ℝ ∖ {0}) ↦ (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦)) | |
10 | riotaex 6655 | . . . 4 ⊢ (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) ∈ V | |
11 | 4, 8, 9, 10 | ovmpt2 6838 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (ℝ ∖ {0})) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
12 | 1, 11 | sylan2br 492 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
13 | 12 | 3impb 1279 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∖ cdif 3604 {csn 4210 ℩crio 6650 (class class class)co 6690 ℝcr 9973 0cc0 9974 ℝ*cxr 10111 ·e cxmu 11983 /𝑒 cxdiv 29753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-xdiv 29754 |
This theorem is referenced by: xdivcld 29759 xdivmul 29761 rexdiv 29762 xdivpnfrp 29769 |
Copyright terms: Public domain | W3C validator |