Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xdivpnfrp Structured version   Visualization version   GIF version

Theorem xdivpnfrp 29871
 Description: Plus infinity divided by a positive real number is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.)
Assertion
Ref Expression
xdivpnfrp (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞)

Proof of Theorem xdivpnfrp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rprene0 11963 . . . . 5 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))
2 pnfxr 10205 . . . . 5 +∞ ∈ ℝ*
31, 2jctil 561 . . . 4 (𝐴 ∈ ℝ+ → (+∞ ∈ ℝ* ∧ (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0)))
4 3anass 1081 . . . 4 ((+∞ ∈ ℝ*𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ↔ (+∞ ∈ ℝ* ∧ (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0)))
53, 4sylibr 224 . . 3 (𝐴 ∈ ℝ+ → (+∞ ∈ ℝ*𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))
6 xdivval 29857 . . 3 ((+∞ ∈ ℝ*𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (+∞ /𝑒 𝐴) = (𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞))
75, 6syl 17 . 2 (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = (𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞))
82a1i 11 . . 3 (𝐴 ∈ ℝ+ → +∞ ∈ ℝ*)
9 xlemul2 12235 . . . . . . 7 ((+∞ ∈ ℝ*𝑥 ∈ ℝ*𝐴 ∈ ℝ+) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥)))
102, 9mp3an1 1524 . . . . . 6 ((𝑥 ∈ ℝ*𝐴 ∈ ℝ+) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥)))
1110ancoms 468 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ*) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥)))
12 rpxr 11954 . . . . . . . 8 (𝐴 ∈ ℝ+𝐴 ∈ ℝ*)
13 rpgt0 11958 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 < 𝐴)
14 xmulpnf1 12218 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
1512, 13, 14syl2anc 696 . . . . . . 7 (𝐴 ∈ ℝ+ → (𝐴 ·e +∞) = +∞)
1615adantr 472 . . . . . 6 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ*) → (𝐴 ·e +∞) = +∞)
1716breq1d 4770 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ*) → ((𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥) ↔ +∞ ≤ (𝐴 ·e 𝑥)))
1811, 17bitr2d 269 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ*) → (+∞ ≤ (𝐴 ·e 𝑥) ↔ +∞ ≤ 𝑥))
19 xmulcl 12217 . . . . . 6 ((𝐴 ∈ ℝ*𝑥 ∈ ℝ*) → (𝐴 ·e 𝑥) ∈ ℝ*)
2012, 19sylan 489 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ*) → (𝐴 ·e 𝑥) ∈ ℝ*)
21 xgepnf 12110 . . . . 5 ((𝐴 ·e 𝑥) ∈ ℝ* → (+∞ ≤ (𝐴 ·e 𝑥) ↔ (𝐴 ·e 𝑥) = +∞))
2220, 21syl 17 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ*) → (+∞ ≤ (𝐴 ·e 𝑥) ↔ (𝐴 ·e 𝑥) = +∞))
23 xgepnf 12110 . . . . 5 (𝑥 ∈ ℝ* → (+∞ ≤ 𝑥𝑥 = +∞))
2423adantl 473 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ*) → (+∞ ≤ 𝑥𝑥 = +∞))
2518, 22, 243bitr3d 298 . . 3 ((𝐴 ∈ ℝ+𝑥 ∈ ℝ*) → ((𝐴 ·e 𝑥) = +∞ ↔ 𝑥 = +∞))
268, 25riota5 6752 . 2 (𝐴 ∈ ℝ+ → (𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞) = +∞)
277, 26eqtrd 2758 1 (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1596   ∈ wcel 2103   ≠ wne 2896   class class class wbr 4760  ℩crio 6725  (class class class)co 6765  ℝcr 10048  0cc0 10049  +∞cpnf 10184  ℝ*cxr 10186   < clt 10187   ≤ cle 10188  ℝ+crp 11946   ·e cxmu 12059   /𝑒 cxdiv 29855 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-po 5139  df-so 5140  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-1st 7285  df-2nd 7286  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-rp 11947  df-xneg 12060  df-xmul 12062  df-xdiv 29856 This theorem is referenced by:  xrpxdivcld  29873
 Copyright terms: Public domain W3C validator