![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xdivcld | Structured version Visualization version GIF version |
Description: Closure law for the extended division. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
Ref | Expression |
---|---|
xdivcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xdivcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
xdivcld.3 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
xdivcld | ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xdivcld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xdivcld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | xdivcld.3 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | xdivval 29958 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) | |
5 | 1, 2, 3, 4 | syl3anc 1477 | . 2 ⊢ (𝜑 → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
6 | xreceu 29961 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) | |
7 | 1, 2, 3, 6 | syl3anc 1477 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) |
8 | riotacl 6790 | . . 3 ⊢ (∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴 → (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) ∈ ℝ*) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) ∈ ℝ*) |
10 | 5, 9 | eqeltrd 2840 | 1 ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 ∃!wreu 3053 ℩crio 6775 (class class class)co 6815 ℝcr 10148 0cc0 10149 ℝ*cxr 10286 ·e cxmu 12159 /𝑒 cxdiv 29956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-po 5188 df-so 5189 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-1st 7335 df-2nd 7336 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-xneg 12160 df-xmul 12162 df-xdiv 29957 |
This theorem is referenced by: xdivcl 29963 xdivrec 29966 |
Copyright terms: Public domain | W3C validator |