![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
Ref | Expression |
---|---|
xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
3 | 2 | bicomi 214 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 1, 3 | xchnxbi 321 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: 3ioran 1095 3ianor 1096 hadnot 1689 cadnot 1702 nsspssun 4006 undif3 4037 intirr 5654 ordtri3or 5897 frxp 7442 ressuppssdif 7471 domunfican 8393 ssfin4 9338 prinfzo0 12715 lcmfunsnlem2lem1 15559 ncoprmlnprm 15643 prm23ge5 15727 symgfix2 18043 gsumdixp 18817 cnfldfunALT 19974 symgmatr01lem 20678 ppttop 21032 zclmncvs 23167 mdegleb 24044 2lgslem3 25350 trlsegvdeg 27407 strlem1 29449 isarchi 30076 bnj1189 31415 dfon3 32336 poimirlem18 33760 poimirlem21 33763 poimirlem30 33772 poimirlem31 33773 ftc1anclem3 33819 hdmaplem4 37584 mapdh9a 37599 ifpnot23 38349 ifpdfxor 38358 ifpnim1 38368 ifpnim2 38370 relintabex 38413 ntrneineine1lem 38908 2exanali 39113 oddneven 42082 |
Copyright terms: Public domain | W3C validator |