MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddilem Structured version   Visualization version   GIF version

Theorem xadddilem 12162
Description: Lemma for xadddi 12163. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddilem (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))

Proof of Theorem xadddilem
StepHypRef Expression
1 simpl1 1084 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
2 recn 10064 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 10064 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 recn 10064 . . . . . . . 8 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
5 adddi 10063 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
62, 3, 4, 5syl3an 1408 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
763expa 1284 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
8 readdcl 10057 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 + 𝐶) ∈ ℝ)
9 rexmul 12139 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝐵 + 𝐶) ∈ ℝ) → (𝐴 ·e (𝐵 + 𝐶)) = (𝐴 · (𝐵 + 𝐶)))
108, 9sylan2 490 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐴 ·e (𝐵 + 𝐶)) = (𝐴 · (𝐵 + 𝐶)))
1110anassrs 681 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 + 𝐶)) = (𝐴 · (𝐵 + 𝐶)))
12 remulcl 10059 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
1312adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
14 remulcl 10059 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
1514adantlr 751 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 · 𝐶) ∈ ℝ)
16 rexadd 12101 . . . . . . 7 (((𝐴 · 𝐵) ∈ ℝ ∧ (𝐴 · 𝐶) ∈ ℝ) → ((𝐴 · 𝐵) +𝑒 (𝐴 · 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
1713, 15, 16syl2anc 694 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐵) +𝑒 (𝐴 · 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
187, 11, 173eqtr4d 2695 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 + 𝐶)) = ((𝐴 · 𝐵) +𝑒 (𝐴 · 𝐶)))
19 rexadd 12101 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
2019adantll 750 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = (𝐵 + 𝐶))
2120oveq2d 6706 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e (𝐵 + 𝐶)))
22 rexmul 12139 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
2322adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
24 rexmul 12139 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐶) = (𝐴 · 𝐶))
2524adantlr 751 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐶) = (𝐴 · 𝐶))
2623, 25oveq12d 6708 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 · 𝐵) +𝑒 (𝐴 · 𝐶)))
2718, 21, 263eqtr4d 2695 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
281, 27sylanl1 683 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
29 rexr 10123 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
30293ad2ant1 1102 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
31 xmulpnf1 12142 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3230, 31sylan 487 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
3332adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 ·e +∞) = +∞)
3422, 12eqeltrd 2730 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) ∈ ℝ)
351, 34sylan 487 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) ∈ ℝ)
36 rexr 10123 . . . . . . . 8 ((𝐴 ·e 𝐵) ∈ ℝ → (𝐴 ·e 𝐵) ∈ ℝ*)
37 renemnf 10126 . . . . . . . 8 ((𝐴 ·e 𝐵) ∈ ℝ → (𝐴 ·e 𝐵) ≠ -∞)
38 xaddpnf1 12095 . . . . . . . 8 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐵) ≠ -∞) → ((𝐴 ·e 𝐵) +𝑒 +∞) = +∞)
3936, 37, 38syl2anc 694 . . . . . . 7 ((𝐴 ·e 𝐵) ∈ ℝ → ((𝐴 ·e 𝐵) +𝑒 +∞) = +∞)
4035, 39syl 17 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → ((𝐴 ·e 𝐵) +𝑒 +∞) = +∞)
4133, 40eqtr4d 2688 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 ·e +∞) = ((𝐴 ·e 𝐵) +𝑒 +∞))
4241adantr 480 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = +∞) → (𝐴 ·e +∞) = ((𝐴 ·e 𝐵) +𝑒 +∞))
43 oveq2 6698 . . . . . 6 (𝐶 = +∞ → (𝐵 +𝑒 𝐶) = (𝐵 +𝑒 +∞))
44 rexr 10123 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
45 renemnf 10126 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ≠ -∞)
46 xaddpnf1 12095 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
4744, 45, 46syl2anc 694 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 +𝑒 +∞) = +∞)
4847adantl 481 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 +∞) = +∞)
4943, 48sylan9eqr 2707 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
5049oveq2d 6706 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e +∞))
51 oveq2 6698 . . . . . 6 (𝐶 = +∞ → (𝐴 ·e 𝐶) = (𝐴 ·e +∞))
5251, 33sylan9eqr 2707 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = +∞) → (𝐴 ·e 𝐶) = +∞)
5352oveq2d 6706 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 +∞))
5442, 50, 533eqtr4d 2695 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
55 xmulmnf1 12144 . . . . . . . 8 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e -∞) = -∞)
5630, 55sylan 487 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e -∞) = -∞)
5756adantr 480 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 ·e -∞) = -∞)
5857adantr 480 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 ·e -∞) = -∞)
5935adantr 480 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 ·e 𝐵) ∈ ℝ)
60 renepnf 10125 . . . . . . 7 ((𝐴 ·e 𝐵) ∈ ℝ → (𝐴 ·e 𝐵) ≠ +∞)
61 xaddmnf1 12097 . . . . . . 7 (((𝐴 ·e 𝐵) ∈ ℝ* ∧ (𝐴 ·e 𝐵) ≠ +∞) → ((𝐴 ·e 𝐵) +𝑒 -∞) = -∞)
6236, 60, 61syl2anc 694 . . . . . 6 ((𝐴 ·e 𝐵) ∈ ℝ → ((𝐴 ·e 𝐵) +𝑒 -∞) = -∞)
6359, 62syl 17 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) +𝑒 -∞) = -∞)
6458, 63eqtr4d 2688 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 ·e -∞) = ((𝐴 ·e 𝐵) +𝑒 -∞))
65 oveq2 6698 . . . . . 6 (𝐶 = -∞ → (𝐵 +𝑒 𝐶) = (𝐵 +𝑒 -∞))
66 renepnf 10125 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ≠ +∞)
67 xaddmnf1 12097 . . . . . . . 8 ((𝐵 ∈ ℝ*𝐵 ≠ +∞) → (𝐵 +𝑒 -∞) = -∞)
6844, 66, 67syl2anc 694 . . . . . . 7 (𝐵 ∈ ℝ → (𝐵 +𝑒 -∞) = -∞)
6968adantl 481 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐵 +𝑒 -∞) = -∞)
7065, 69sylan9eqr 2707 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐵 +𝑒 𝐶) = -∞)
7170oveq2d 6706 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e -∞))
72 oveq2 6698 . . . . . 6 (𝐶 = -∞ → (𝐴 ·e 𝐶) = (𝐴 ·e -∞))
7372, 57sylan9eqr 2707 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 ·e 𝐶) = -∞)
7473oveq2d 6706 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 -∞))
7564, 71, 743eqtr4d 2695 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
76 simpl3 1086 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → 𝐶 ∈ ℝ*)
77 elxr 11988 . . . . 5 (𝐶 ∈ ℝ* ↔ (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
7876, 77sylib 208 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
7978adantr 480 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
8028, 54, 75, 79mpjao3dan 1435 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
8132ad2antrr 762 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e +∞) = +∞)
821adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ)
8324, 14eqeltrd 2730 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐶) ∈ ℝ)
8482, 83sylan 487 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐶) ∈ ℝ)
85 rexr 10123 . . . . . . 7 ((𝐴 ·e 𝐶) ∈ ℝ → (𝐴 ·e 𝐶) ∈ ℝ*)
86 renemnf 10126 . . . . . . 7 ((𝐴 ·e 𝐶) ∈ ℝ → (𝐴 ·e 𝐶) ≠ -∞)
87 xaddpnf2 12096 . . . . . . 7 (((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ≠ -∞) → (+∞ +𝑒 (𝐴 ·e 𝐶)) = +∞)
8885, 86, 87syl2anc 694 . . . . . 6 ((𝐴 ·e 𝐶) ∈ ℝ → (+∞ +𝑒 (𝐴 ·e 𝐶)) = +∞)
8984, 88syl 17 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (+∞ +𝑒 (𝐴 ·e 𝐶)) = +∞)
9081, 89eqtr4d 2688 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e +∞) = (+∞ +𝑒 (𝐴 ·e 𝐶)))
91 simpr 476 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) → 𝐵 = +∞)
9291oveq1d 6705 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 𝐶))
93 rexr 10123 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
94 renemnf 10126 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ≠ -∞)
95 xaddpnf2 12096 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (+∞ +𝑒 𝐶) = +∞)
9693, 94, 95syl2anc 694 . . . . . 6 (𝐶 ∈ ℝ → (+∞ +𝑒 𝐶) = +∞)
9792, 96sylan9eq 2705 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = +∞)
9897oveq2d 6706 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e +∞))
99 oveq2 6698 . . . . . . 7 (𝐵 = +∞ → (𝐴 ·e 𝐵) = (𝐴 ·e +∞))
10099, 32sylan9eqr 2707 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐵) = +∞)
101100adantr 480 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐵) = +∞)
102101oveq1d 6705 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (+∞ +𝑒 (𝐴 ·e 𝐶)))
10390, 98, 1023eqtr4d 2695 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
104 pnfxr 10130 . . . . . . 7 +∞ ∈ ℝ*
105 pnfnemnf 10132 . . . . . . 7 +∞ ≠ -∞
106 xaddpnf1 12095 . . . . . . 7 ((+∞ ∈ ℝ* ∧ +∞ ≠ -∞) → (+∞ +𝑒 +∞) = +∞)
107104, 105, 106mp2an 708 . . . . . 6 (+∞ +𝑒 +∞) = +∞
10832, 32oveq12d 6708 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e +∞) +𝑒 (𝐴 ·e +∞)) = (+∞ +𝑒 +∞))
109107, 108, 323eqtr4a 2711 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e +∞) +𝑒 (𝐴 ·e +∞)) = (𝐴 ·e +∞))
110109ad2antrr 762 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = +∞) → ((𝐴 ·e +∞) +𝑒 (𝐴 ·e +∞)) = (𝐴 ·e +∞))
11199, 51oveqan12d 6709 . . . . 5 ((𝐵 = +∞ ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e +∞) +𝑒 (𝐴 ·e +∞)))
112111adantll 750 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e +∞) +𝑒 (𝐴 ·e +∞)))
113 oveq12 6699 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐶 = +∞) → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 +∞))
114113, 107syl6eq 2701 . . . . . 6 ((𝐵 = +∞ ∧ 𝐶 = +∞) → (𝐵 +𝑒 𝐶) = +∞)
115114oveq2d 6706 . . . . 5 ((𝐵 = +∞ ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e +∞))
116115adantll 750 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e +∞))
117110, 112, 1163eqtr4rd 2696 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
118 pnfaddmnf 12099 . . . . . 6 (+∞ +𝑒 -∞) = 0
11932, 56oveq12d 6708 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e +∞) +𝑒 (𝐴 ·e -∞)) = (+∞ +𝑒 -∞))
120 xmul01 12135 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 ·e 0) = 0)
1211, 29, 1203syl 18 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e 0) = 0)
122118, 119, 1213eqtr4a 2711 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e +∞) +𝑒 (𝐴 ·e -∞)) = (𝐴 ·e 0))
123122ad2antrr 762 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = -∞) → ((𝐴 ·e +∞) +𝑒 (𝐴 ·e -∞)) = (𝐴 ·e 0))
12499, 72oveqan12d 6709 . . . . 5 ((𝐵 = +∞ ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e +∞) +𝑒 (𝐴 ·e -∞)))
125124adantll 750 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e +∞) +𝑒 (𝐴 ·e -∞)))
126 oveq12 6699 . . . . . . 7 ((𝐵 = +∞ ∧ 𝐶 = -∞) → (𝐵 +𝑒 𝐶) = (+∞ +𝑒 -∞))
127126, 118syl6eq 2701 . . . . . 6 ((𝐵 = +∞ ∧ 𝐶 = -∞) → (𝐵 +𝑒 𝐶) = 0)
128127oveq2d 6706 . . . . 5 ((𝐵 = +∞ ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e 0))
129128adantll 750 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e 0))
130123, 125, 1293eqtr4rd 2696 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
13178adantr 480 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
132103, 117, 130, 131mpjao3dan 1435 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
13356ad2antrr 762 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e -∞) = -∞)
1341adantr 480 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) → 𝐴 ∈ ℝ)
135134, 83sylan 487 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐶) ∈ ℝ)
136 renepnf 10125 . . . . . . 7 ((𝐴 ·e 𝐶) ∈ ℝ → (𝐴 ·e 𝐶) ≠ +∞)
137 xaddmnf2 12098 . . . . . . 7 (((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐴 ·e 𝐶) ≠ +∞) → (-∞ +𝑒 (𝐴 ·e 𝐶)) = -∞)
13885, 136, 137syl2anc 694 . . . . . 6 ((𝐴 ·e 𝐶) ∈ ℝ → (-∞ +𝑒 (𝐴 ·e 𝐶)) = -∞)
139135, 138syl 17 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (-∞ +𝑒 (𝐴 ·e 𝐶)) = -∞)
140133, 139eqtr4d 2688 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e -∞) = (-∞ +𝑒 (𝐴 ·e 𝐶)))
141 simpr 476 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) → 𝐵 = -∞)
142141oveq1d 6705 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) → (𝐵 +𝑒 𝐶) = (-∞ +𝑒 𝐶))
143 renepnf 10125 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ≠ +∞)
144 xaddmnf2 12098 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ +∞) → (-∞ +𝑒 𝐶) = -∞)
14593, 143, 144syl2anc 694 . . . . . 6 (𝐶 ∈ ℝ → (-∞ +𝑒 𝐶) = -∞)
146142, 145sylan9eq 2705 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐵 +𝑒 𝐶) = -∞)
147146oveq2d 6706 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e -∞))
148 oveq2 6698 . . . . . . 7 (𝐵 = -∞ → (𝐴 ·e 𝐵) = (𝐴 ·e -∞))
149148, 56sylan9eqr 2707 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) → (𝐴 ·e 𝐵) = -∞)
150149adantr 480 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e 𝐵) = -∞)
151150oveq1d 6705 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = (-∞ +𝑒 (𝐴 ·e 𝐶)))
152140, 147, 1513eqtr4d 2695 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 ∈ ℝ) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
15356, 32oveq12d 6708 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e -∞) +𝑒 (𝐴 ·e +∞)) = (-∞ +𝑒 +∞))
154 mnfaddpnf 12100 . . . . . . 7 (-∞ +𝑒 +∞) = 0
155153, 154syl6eq 2701 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e -∞) +𝑒 (𝐴 ·e +∞)) = 0)
156121, 155eqtr4d 2688 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e 0) = ((𝐴 ·e -∞) +𝑒 (𝐴 ·e +∞)))
157156ad2antrr 762 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = +∞) → (𝐴 ·e 0) = ((𝐴 ·e -∞) +𝑒 (𝐴 ·e +∞)))
158 oveq12 6699 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐶 = +∞) → (𝐵 +𝑒 𝐶) = (-∞ +𝑒 +∞))
159158, 154syl6eq 2701 . . . . . 6 ((𝐵 = -∞ ∧ 𝐶 = +∞) → (𝐵 +𝑒 𝐶) = 0)
160159oveq2d 6706 . . . . 5 ((𝐵 = -∞ ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e 0))
161160adantll 750 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e 0))
162148, 51oveqan12d 6709 . . . . 5 ((𝐵 = -∞ ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e -∞) +𝑒 (𝐴 ·e +∞)))
163162adantll 750 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = +∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e -∞) +𝑒 (𝐴 ·e +∞)))
164157, 161, 1633eqtr4d 2695 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = +∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
165 mnfxr 10134 . . . . . . 7 -∞ ∈ ℝ*
166 mnfnepnf 10133 . . . . . . 7 -∞ ≠ +∞
167 xaddmnf1 12097 . . . . . . 7 ((-∞ ∈ ℝ* ∧ -∞ ≠ +∞) → (-∞ +𝑒 -∞) = -∞)
168165, 166, 167mp2an 708 . . . . . 6 (-∞ +𝑒 -∞) = -∞
16956, 56oveq12d 6708 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e -∞) +𝑒 (𝐴 ·e -∞)) = (-∞ +𝑒 -∞))
170168, 169, 563eqtr4a 2711 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → ((𝐴 ·e -∞) +𝑒 (𝐴 ·e -∞)) = (𝐴 ·e -∞))
171170ad2antrr 762 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = -∞) → ((𝐴 ·e -∞) +𝑒 (𝐴 ·e -∞)) = (𝐴 ·e -∞))
172148, 72oveqan12d 6709 . . . . 5 ((𝐵 = -∞ ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e -∞) +𝑒 (𝐴 ·e -∞)))
173172adantll 750 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = -∞) → ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)) = ((𝐴 ·e -∞) +𝑒 (𝐴 ·e -∞)))
174 oveq12 6699 . . . . . . 7 ((𝐵 = -∞ ∧ 𝐶 = -∞) → (𝐵 +𝑒 𝐶) = (-∞ +𝑒 -∞))
175174, 168syl6eq 2701 . . . . . 6 ((𝐵 = -∞ ∧ 𝐶 = -∞) → (𝐵 +𝑒 𝐶) = -∞)
176175oveq2d 6706 . . . . 5 ((𝐵 = -∞ ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e -∞))
177176adantll 750 . . . 4 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = (𝐴 ·e -∞))
178171, 173, 1773eqtr4rd 2696 . . 3 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) ∧ 𝐶 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
17978adantr 480 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) → (𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞))
180152, 164, 178, 179mpjao3dan 1435 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) ∧ 𝐵 = -∞) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
181 simpl2 1085 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
182 elxr 11988 . . 3 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
183181, 182sylib 208 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
18480, 132, 180, 183mpjao3dan 1435 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ 0 < 𝐴) → (𝐴 ·e (𝐵 +𝑒 𝐶)) = ((𝐴 ·e 𝐵) +𝑒 (𝐴 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3o 1053  w3a 1054   = wceq 1523  wcel 2030  wne 2823   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974   + caddc 9977   · cmul 9979  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112   +𝑒 cxad 11982   ·e cxmu 11983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-xneg 11984  df-xadd 11985  df-xmul 11986
This theorem is referenced by:  xadddi  12163
  Copyright terms: Public domain W3C validator