![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xaddcl | Structured version Visualization version GIF version |
Description: The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddcl | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xaddf 12260 | . 2 ⊢ +𝑒 :(ℝ* × ℝ*)⟶ℝ* | |
2 | 1 | fovcl 6916 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 (class class class)co 6796 ℝ*cxr 10279 +𝑒 cxad 12149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-i2m1 10210 ax-1ne0 10211 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-1st 7319 df-2nd 7320 df-pnf 10282 df-mnf 10283 df-xr 10284 df-xadd 12152 |
This theorem is referenced by: xaddass 12284 xaddass2 12285 xleadd1a 12288 xleadd1 12290 xltadd1 12291 xaddge0 12293 xle2add 12294 xlt2add 12295 xsubge0 12296 xposdif 12297 xlesubadd 12298 xadddi 12330 xadddir 12331 xadddi2 12332 xadddi2r 12333 xaddcld 12336 ge0xaddcl 12493 xrsmgm 19996 xrs1mnd 19999 xrsds 20004 xrsxmet 22832 xrofsup 29873 supxrgelem 40066 caragenel2d 41263 |
Copyright terms: Public domain | W3C validator |