![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlktovf | Structured version Visualization version GIF version |
Description: Lemma 1 for wrd2f1tovbij 13913. (Contributed by Alexander van der Vekens, 27-Jul-2018.) |
Ref | Expression |
---|---|
wrd2f1tovbij.d | ⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} |
wrd2f1tovbij.r | ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} |
wrd2f1tovbij.f | ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) |
Ref | Expression |
---|---|
wwlktovf | ⊢ 𝐹:𝐷⟶𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrd2f1tovbij.f | . 2 ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝑡‘1)) | |
2 | wrdf 13506 | . . . . 5 ⊢ (𝑡 ∈ Word 𝑉 → 𝑡:(0..^(♯‘𝑡))⟶𝑉) | |
3 | oveq2 6804 | . . . . . . . 8 ⊢ ((♯‘𝑡) = 2 → (0..^(♯‘𝑡)) = (0..^2)) | |
4 | 3 | feq2d 6170 | . . . . . . 7 ⊢ ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉 ↔ 𝑡:(0..^2)⟶𝑉)) |
5 | 1nn0 11515 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
6 | 2nn 11392 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
7 | 1lt2 11401 | . . . . . . . . 9 ⊢ 1 < 2 | |
8 | elfzo0 12717 | . . . . . . . . 9 ⊢ (1 ∈ (0..^2) ↔ (1 ∈ ℕ0 ∧ 2 ∈ ℕ ∧ 1 < 2)) | |
9 | 5, 6, 7, 8 | mpbir3an 1426 | . . . . . . . 8 ⊢ 1 ∈ (0..^2) |
10 | ffvelrn 6502 | . . . . . . . 8 ⊢ ((𝑡:(0..^2)⟶𝑉 ∧ 1 ∈ (0..^2)) → (𝑡‘1) ∈ 𝑉) | |
11 | 9, 10 | mpan2 671 | . . . . . . 7 ⊢ (𝑡:(0..^2)⟶𝑉 → (𝑡‘1) ∈ 𝑉) |
12 | 4, 11 | syl6bi 243 | . . . . . 6 ⊢ ((♯‘𝑡) = 2 → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉)) |
13 | 12 | 3ad2ant1 1127 | . . . . 5 ⊢ (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → (𝑡:(0..^(♯‘𝑡))⟶𝑉 → (𝑡‘1) ∈ 𝑉)) |
14 | 2, 13 | mpan9 496 | . . . 4 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → (𝑡‘1) ∈ 𝑉) |
15 | preq1 4405 | . . . . . . . 8 ⊢ ((𝑡‘0) = 𝑃 → {(𝑡‘0), (𝑡‘1)} = {𝑃, (𝑡‘1)}) | |
16 | 15 | eleq1d 2835 | . . . . . . 7 ⊢ ((𝑡‘0) = 𝑃 → ({(𝑡‘0), (𝑡‘1)} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
17 | 16 | biimpa 462 | . . . . . 6 ⊢ (((𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
18 | 17 | 3adant1 1124 | . . . . 5 ⊢ (((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
19 | 18 | adantl 467 | . . . 4 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → {𝑃, (𝑡‘1)} ∈ 𝑋) |
20 | 14, 19 | jca 501 | . . 3 ⊢ ((𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) → ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
21 | fveq2 6333 | . . . . . 6 ⊢ (𝑤 = 𝑡 → (♯‘𝑤) = (♯‘𝑡)) | |
22 | 21 | eqeq1d 2773 | . . . . 5 ⊢ (𝑤 = 𝑡 → ((♯‘𝑤) = 2 ↔ (♯‘𝑡) = 2)) |
23 | fveq1 6332 | . . . . . 6 ⊢ (𝑤 = 𝑡 → (𝑤‘0) = (𝑡‘0)) | |
24 | 23 | eqeq1d 2773 | . . . . 5 ⊢ (𝑤 = 𝑡 → ((𝑤‘0) = 𝑃 ↔ (𝑡‘0) = 𝑃)) |
25 | fveq1 6332 | . . . . . . 7 ⊢ (𝑤 = 𝑡 → (𝑤‘1) = (𝑡‘1)) | |
26 | 23, 25 | preq12d 4413 | . . . . . 6 ⊢ (𝑤 = 𝑡 → {(𝑤‘0), (𝑤‘1)} = {(𝑡‘0), (𝑡‘1)}) |
27 | 26 | eleq1d 2835 | . . . . 5 ⊢ (𝑤 = 𝑡 → ({(𝑤‘0), (𝑤‘1)} ∈ 𝑋 ↔ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋)) |
28 | 22, 24, 27 | 3anbi123d 1547 | . . . 4 ⊢ (𝑤 = 𝑡 → (((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋) ↔ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋))) |
29 | wrd2f1tovbij.d | . . . 4 ⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = 2 ∧ (𝑤‘0) = 𝑃 ∧ {(𝑤‘0), (𝑤‘1)} ∈ 𝑋)} | |
30 | 28, 29 | elrab2 3518 | . . 3 ⊢ (𝑡 ∈ 𝐷 ↔ (𝑡 ∈ Word 𝑉 ∧ ((♯‘𝑡) = 2 ∧ (𝑡‘0) = 𝑃 ∧ {(𝑡‘0), (𝑡‘1)} ∈ 𝑋))) |
31 | preq2 4406 | . . . . 5 ⊢ (𝑛 = (𝑡‘1) → {𝑃, 𝑛} = {𝑃, (𝑡‘1)}) | |
32 | 31 | eleq1d 2835 | . . . 4 ⊢ (𝑛 = (𝑡‘1) → ({𝑃, 𝑛} ∈ 𝑋 ↔ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
33 | wrd2f1tovbij.r | . . . 4 ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {𝑃, 𝑛} ∈ 𝑋} | |
34 | 32, 33 | elrab2 3518 | . . 3 ⊢ ((𝑡‘1) ∈ 𝑅 ↔ ((𝑡‘1) ∈ 𝑉 ∧ {𝑃, (𝑡‘1)} ∈ 𝑋)) |
35 | 20, 30, 34 | 3imtr4i 281 | . 2 ⊢ (𝑡 ∈ 𝐷 → (𝑡‘1) ∈ 𝑅) |
36 | 1, 35 | fmpti 6527 | 1 ⊢ 𝐹:𝐷⟶𝑅 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 {crab 3065 {cpr 4319 class class class wbr 4787 ↦ cmpt 4864 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 0cc0 10142 1c1 10143 < clt 10280 ℕcn 11226 2c2 11276 ℕ0cn0 11499 ..^cfzo 12673 ♯chash 13321 Word cword 13487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 |
This theorem is referenced by: wwlktovf1 13910 wwlktovfo 13911 |
Copyright terms: Public domain | W3C validator |