MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksubclwwlk Structured version   Visualization version   GIF version

Theorem wwlksubclwwlk 27210
Description: Any prefix of a word representing a closed walk represents a walk. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 28-Apr-2021.)
Assertion
Ref Expression
wwlksubclwwlk ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → (𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺)))

Proof of Theorem wwlksubclwwlk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
2 eqid 2760 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
31, 2clwwlknp 27186 . . . . 5 (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑋), (𝑋‘0)} ∈ (Edg‘𝐺)))
4 swrdcl 13638 . . . . . . . . . 10 (𝑋 ∈ Word (Vtx‘𝐺) → (𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺))
54adantr 472 . . . . . . . . 9 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) → (𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺))
65ad2antrr 764 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺))
7 nnz 11611 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
8 eluzp1m1 11923 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
98ex 449 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℤ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ𝑀)))
107, 9syl 17 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ𝑀)))
11 peano2zm 11632 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
127, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℤ)
13 nnre 11239 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1413lem1d 11169 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (𝑀 − 1) ≤ 𝑀)
15 eluzuzle 11908 . . . . . . . . . . . . . . . . . 18 (((𝑀 − 1) ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀) → ((𝑁 − 1) ∈ (ℤ𝑀) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1612, 14, 15syl2anc 696 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → ((𝑁 − 1) ∈ (ℤ𝑀) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1710, 16syld 47 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1))))
1817imp 444 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)))
19 fzoss2 12710 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ (ℤ‘(𝑀 − 1)) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
2018, 19syl 17 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
2120adantl 473 . . . . . . . . . . . . 13 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)))
22 ssralv 3807 . . . . . . . . . . . . 13 ((0..^(𝑀 − 1)) ⊆ (0..^(𝑁 − 1)) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2321, 22syl 17 . . . . . . . . . . . 12 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
24 simpll 807 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑋 ∈ Word (Vtx‘𝐺))
2524adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑋 ∈ Word (Vtx‘𝐺))
26 eluz2 11905 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁))
2713adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ∈ ℝ)
28 peano2re 10421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
2913, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℝ)
3029adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 + 1) ∈ ℝ)
31 zre 11593 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3231ad2antrl 766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑁 ∈ ℝ)
3313lep1d 11167 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → 𝑀 ≤ (𝑀 + 1))
3433adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀 ≤ (𝑀 + 1))
35 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 + 1) ≤ 𝑁)
3635adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 + 1) ≤ 𝑁)
3727, 30, 32, 34, 36letrd 10406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → 𝑀𝑁)
38 nnnn0 11511 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
3938ad2antrr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
40 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
4140adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
42 0red 10253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ)
4313adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
4431adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
4542, 43, 443jca 1123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
4645adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
4738nn0ge0d 11566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑀 ∈ ℕ → 0 ≤ 𝑀)
4847adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 0 ≤ 𝑀)
4948anim1i 593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (0 ≤ 𝑀𝑀𝑁))
50 letr 10343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
5146, 49, 50sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 0 ≤ 𝑁)
5241, 51jca 555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
53 elnn0z 11602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
5452, 53sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
5554adantlrr 759 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
56 simpr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → 𝑀𝑁)
5739, 55, 563jca 1123 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) ∧ 𝑀𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
5837, 57mpdan 705 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
5958expcom 450 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
60593adant1 1125 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
6126, 60sylbi 207 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 ∈ ℕ → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
6261impcom 445 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
63 elfz2nn0 12644 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
6462, 63sylibr 224 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ (0...𝑁))
6564adantl 473 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 ∈ (0...𝑁))
66 oveq2 6822 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝑋) = 𝑁 → (0...(♯‘𝑋)) = (0...𝑁))
6766eleq2d 2825 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑋) = 𝑁 → (𝑀 ∈ (0...(♯‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
6867adantl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) → (𝑀 ∈ (0...(♯‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
6968adantr 472 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑀 ∈ (0...(♯‘𝑋)) ↔ 𝑀 ∈ (0...𝑁)))
7065, 69mpbird 247 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 ∈ (0...(♯‘𝑋)))
7170adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑀 ∈ (0...(♯‘𝑋)))
72 eluz2 11905 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ (ℤ‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
7312, 7, 14, 72syl3anbrc 1429 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘(𝑀 − 1)))
74 fzoss2 12710 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ (ℤ‘(𝑀 − 1)) → (0..^(𝑀 − 1)) ⊆ (0..^𝑀))
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (0..^(𝑀 − 1)) ⊆ (0..^𝑀))
7675sseld 3743 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑖 ∈ (0..^(𝑀 − 1)) → 𝑖 ∈ (0..^𝑀)))
7776ad2antrl 766 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑖 ∈ (0..^(𝑀 − 1)) → 𝑖 ∈ (0..^𝑀)))
7877imp 444 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → 𝑖 ∈ (0..^𝑀))
79 swrd0fv 13659 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋)) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑋 substr ⟨0, 𝑀⟩)‘𝑖) = (𝑋𝑖))
8025, 71, 78, 79syl3anc 1477 . . . . . . . . . . . . . . . 16 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ((𝑋 substr ⟨0, 𝑀⟩)‘𝑖) = (𝑋𝑖))
8180eqcomd 2766 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑋𝑖) = ((𝑋 substr ⟨0, 𝑀⟩)‘𝑖))
82 fzonn0p1p1 12761 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^((𝑀 − 1) + 1)))
83 nncn 11240 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
84 npcan1 10667 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
8583, 84syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → ((𝑀 − 1) + 1) = 𝑀)
8685oveq2d 6830 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → (0..^((𝑀 − 1) + 1)) = (0..^𝑀))
8786eleq2d 2825 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → ((𝑖 + 1) ∈ (0..^((𝑀 − 1) + 1)) ↔ (𝑖 + 1) ∈ (0..^𝑀)))
8882, 87syl5ib 234 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^𝑀)))
8988ad2antrl 766 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑖 ∈ (0..^(𝑀 − 1)) → (𝑖 + 1) ∈ (0..^𝑀)))
9089imp 444 . . . . . . . . . . . . . . . . 17 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑖 + 1) ∈ (0..^𝑀))
91 swrd0fv 13659 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋)) ∧ (𝑖 + 1) ∈ (0..^𝑀)) → ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1)) = (𝑋‘(𝑖 + 1)))
9225, 71, 90, 91syl3anc 1477 . . . . . . . . . . . . . . . 16 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1)) = (𝑋‘(𝑖 + 1)))
9392eqcomd 2766 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → (𝑋‘(𝑖 + 1)) = ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1)))
9481, 93preq12d 4420 . . . . . . . . . . . . . 14 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → {(𝑋𝑖), (𝑋‘(𝑖 + 1))} = {((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))})
9594eleq1d 2824 . . . . . . . . . . . . 13 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) ∧ 𝑖 ∈ (0..^(𝑀 − 1))) → ({(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9695ralbidva 3123 . . . . . . . . . . . 12 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑀 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9723, 96sylibd 229 . . . . . . . . . . 11 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9897impancom 455 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
9998imp 444 . . . . . . . . 9 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
10024, 70jca 555 . . . . . . . . . . . . . 14 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋))))
101100adantlr 753 . . . . . . . . . . . . 13 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋))))
102 swrd0len 13641 . . . . . . . . . . . . 13 ((𝑋 ∈ Word (Vtx‘𝐺) ∧ 𝑀 ∈ (0...(♯‘𝑋))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = 𝑀)
103101, 102syl 17 . . . . . . . . . . . 12 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = 𝑀)
104103oveq1d 6829 . . . . . . . . . . 11 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1) = (𝑀 − 1))
105104oveq2d 6830 . . . . . . . . . 10 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)) = (0..^(𝑀 − 1)))
106105raleqdv 3283 . . . . . . . . 9 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(𝑀 − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
10799, 106mpbird 247 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
10824, 70, 102syl2anc 696 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = 𝑀)
10985eqcomd 2766 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 = ((𝑀 − 1) + 1))
110109ad2antrl 766 . . . . . . . . . 10 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → 𝑀 = ((𝑀 − 1) + 1))
111108, 110eqtrd 2794 . . . . . . . . 9 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))
112111adantlr 753 . . . . . . . 8 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))
1136, 107, 1123jca 1123 . . . . . . 7 ((((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1)))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1)))
114113ex 449 . . . . . 6 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
1151143adant3 1127 . . . . 5 (((𝑋 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑋) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑋𝑖), (𝑋‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑋), (𝑋‘0)} ∈ (Edg‘𝐺)) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
1163, 115syl 17 . . . 4 (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
117116impcom 445 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1)))
118 nnm1nn0 11546 . . . . 5 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
119118ad2antrr 764 . . . 4 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑀 − 1) ∈ ℕ0)
1201, 2iswwlksnx 26964 . . . 4 ((𝑀 − 1) ∈ ℕ0 → ((𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺) ↔ ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
121119, 120syl 17 . . 3 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺) ↔ ((𝑋 substr ⟨0, 𝑀⟩) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑋 substr ⟨0, 𝑀⟩)) − 1)){((𝑋 substr ⟨0, 𝑀⟩)‘𝑖), ((𝑋 substr ⟨0, 𝑀⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ (♯‘(𝑋 substr ⟨0, 𝑀⟩)) = ((𝑀 − 1) + 1))))
122117, 121mpbird 247 . 2 (((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑋 ∈ (𝑁 ClWWalksN 𝐺)) → (𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺))
123122ex 449 1 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑋 ∈ (𝑁 ClWWalksN 𝐺) → (𝑋 substr ⟨0, 𝑀⟩) ∈ ((𝑀 − 1) WWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wss 3715  {cpr 4323  cop 4327   class class class wbr 4804  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151  cle 10287  cmin 10478  cn 11232  0cn0 11504  cz 11589  cuz 11899  ...cfz 12539  ..^cfzo 12679  chash 13331  Word cword 13497  lastSclsw 13498   substr csubstr 13501  Vtxcvtx 26094  Edgcedg 26159   WWalksN cwwlksn 26950   ClWWalksN cclwwlkn 27168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680  df-hash 13332  df-word 13505  df-substr 13509  df-wwlks 26954  df-wwlksn 26955  df-clwwlk 27126  df-clwwlkn 27170
This theorem is referenced by:  numclwlk2lem2f  27559  numclwlk2lem2fOLD  27566
  Copyright terms: Public domain W3C validator