MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnredwwlkn Structured version   Visualization version   GIF version

Theorem wwlksnredwwlkn 26858
Description: For each walk (as word) of length at least 1 there is a shorter walk (as word). (Contributed by Alexander van der Vekens, 22-Aug-2018.) (Revised by AV, 18-Apr-2021.)
Hypothesis
Ref Expression
wwlksnredwwlkn.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnredwwlkn (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {( lastS ‘𝑦), ( lastS ‘𝑊)} ∈ 𝐸)))
Distinct variable groups:   𝑦,𝐸   𝑦,𝐺   𝑦,𝑁   𝑦,𝑊

Proof of Theorem wwlksnredwwlkn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2652 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) = (𝑊 substr ⟨0, (𝑁 + 1)⟩))
2 eqid 2651 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
3 wwlksnredwwlkn.e . . . . 5 𝐸 = (Edg‘𝐺)
42, 3wwlknp 26791 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
5 simprl 809 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → 𝑊 ∈ Word (Vtx‘𝐺))
6 peano2nn0 11371 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
7 peano2nn0 11371 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
86, 7syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ0)
9 id 22 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
10 nn0p1nn 11370 . . . . . . . . . . . . . 14 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ)
116, 10syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → ((𝑁 + 1) + 1) ∈ ℕ)
12 nn0re 11339 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
13 id 22 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
14 peano2re 10247 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
15 peano2re 10247 . . . . . . . . . . . . . . . . 17 ((𝑁 + 1) ∈ ℝ → ((𝑁 + 1) + 1) ∈ ℝ)
1614, 15syl 17 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → ((𝑁 + 1) + 1) ∈ ℝ)
1713, 14, 163jca 1261 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℝ → (𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ))
1812, 17syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ))
1912ltp1d 10992 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0𝑁 < (𝑁 + 1))
20 nn0re 11339 . . . . . . . . . . . . . . . 16 ((𝑁 + 1) ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
216, 20syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
2221ltp1d 10992 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) < ((𝑁 + 1) + 1))
23 lttr 10152 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ) → ((𝑁 < (𝑁 + 1) ∧ (𝑁 + 1) < ((𝑁 + 1) + 1)) → 𝑁 < ((𝑁 + 1) + 1)))
2423imp 444 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ ∧ ((𝑁 + 1) + 1) ∈ ℝ) ∧ (𝑁 < (𝑁 + 1) ∧ (𝑁 + 1) < ((𝑁 + 1) + 1))) → 𝑁 < ((𝑁 + 1) + 1))
2518, 19, 22, 24syl12anc 1364 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 < ((𝑁 + 1) + 1))
26 elfzo0 12548 . . . . . . . . . . . . 13 (𝑁 ∈ (0..^((𝑁 + 1) + 1)) ↔ (𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) + 1) ∈ ℕ ∧ 𝑁 < ((𝑁 + 1) + 1)))
279, 11, 25, 26syl3anbrc 1265 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ (0..^((𝑁 + 1) + 1)))
28 fz0add1fz1 12577 . . . . . . . . . . . 12 ((((𝑁 + 1) + 1) ∈ ℕ0𝑁 ∈ (0..^((𝑁 + 1) + 1))) → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
298, 27, 28syl2anc 694 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
3029adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1)))
31 oveq2 6698 . . . . . . . . . . . . 13 ((#‘𝑊) = ((𝑁 + 1) + 1) → (1...(#‘𝑊)) = (1...((𝑁 + 1) + 1)))
3231eleq2d 2716 . . . . . . . . . . . 12 ((#‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ∈ (1...(#‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
3332adantl 481 . . . . . . . . . . 11 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑁 + 1) ∈ (1...(#‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
3433adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → ((𝑁 + 1) ∈ (1...(#‘𝑊)) ↔ (𝑁 + 1) ∈ (1...((𝑁 + 1) + 1))))
3530, 34mpbird 247 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (𝑁 + 1) ∈ (1...(#‘𝑊)))
365, 35jca 553 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1))) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(#‘𝑊))))
37363adantr3 1242 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(#‘𝑊))))
38 swrd0fvlsw 13489 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(#‘𝑊))) → ( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑊‘((𝑁 + 1) − 1)))
3937, 38syl 17 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → ( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑊‘((𝑁 + 1) − 1)))
40 lsw 13384 . . . . . . . 8 (𝑊 ∈ Word (Vtx‘𝐺) → ( lastS ‘𝑊) = (𝑊‘((#‘𝑊) − 1)))
41403ad2ant1 1102 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ( lastS ‘𝑊) = (𝑊‘((#‘𝑊) − 1)))
4241adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → ( lastS ‘𝑊) = (𝑊‘((#‘𝑊) − 1)))
4339, 42preq12d 4308 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} = {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((#‘𝑊) − 1))})
44 oveq1 6697 . . . . . . . . . . 11 ((#‘𝑊) = ((𝑁 + 1) + 1) → ((#‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
45443ad2ant2 1103 . . . . . . . . . 10 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ((#‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
4645adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → ((#‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
4746fveq2d 6233 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → (𝑊‘((#‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1)))
4847preq2d 4307 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((#‘𝑊) − 1))} = {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘(((𝑁 + 1) + 1) − 1))})
49 nn0cn 11340 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
50 1cnd 10094 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
5149, 50pncand 10431 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
5251fveq2d 6233 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑊‘((𝑁 + 1) − 1)) = (𝑊𝑁))
536nn0cnd 11391 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
5453, 50pncand 10431 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
5554fveq2d 6233 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑊‘(((𝑁 + 1) + 1) − 1)) = (𝑊‘(𝑁 + 1)))
5652, 55preq12d 4308 . . . . . . . 8 (𝑁 ∈ ℕ0 → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘(((𝑁 + 1) + 1) − 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
5756adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘(((𝑁 + 1) + 1) − 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
5848, 57eqtrd 2685 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((#‘𝑊) − 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
59 fveq2 6229 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (𝑊𝑖) = (𝑊𝑁))
60 oveq1 6697 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → (𝑖 + 1) = (𝑁 + 1))
6160fveq2d 6233 . . . . . . . . . . . 12 (𝑖 = 𝑁 → (𝑊‘(𝑖 + 1)) = (𝑊‘(𝑁 + 1)))
6259, 61preq12d 4308 . . . . . . . . . . 11 (𝑖 = 𝑁 → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
6362eleq1d 2715 . . . . . . . . . 10 (𝑖 = 𝑁 → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
6463rspcv 3336 . . . . . . . . 9 (𝑁 ∈ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
65 fzonn0p1 12584 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
6664, 65syl11 33 . . . . . . . 8 (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (𝑁 ∈ ℕ0 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
67663ad2ant3 1104 . . . . . . 7 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
6867impcom 445 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)
6958, 68eqeltrd 2730 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {(𝑊‘((𝑁 + 1) − 1)), (𝑊‘((#‘𝑊) − 1))} ∈ 𝐸)
7043, 69eqeltrd 2730 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) → {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸)
714, 70sylan2 490 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸)
72 wwlksnred 26855 . . . . 5 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺)))
7372imp 444 . . . 4 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺))
74 eqeq2 2662 . . . . . 6 (𝑦 = (𝑊 substr ⟨0, (𝑁 + 1)⟩) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ↔ (𝑊 substr ⟨0, (𝑁 + 1)⟩) = (𝑊 substr ⟨0, (𝑁 + 1)⟩)))
75 fveq2 6229 . . . . . . . 8 (𝑦 = (𝑊 substr ⟨0, (𝑁 + 1)⟩) → ( lastS ‘𝑦) = ( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)))
7675preq1d 4306 . . . . . . 7 (𝑦 = (𝑊 substr ⟨0, (𝑁 + 1)⟩) → {( lastS ‘𝑦), ( lastS ‘𝑊)} = {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)})
7776eleq1d 2715 . . . . . 6 (𝑦 = (𝑊 substr ⟨0, (𝑁 + 1)⟩) → ({( lastS ‘𝑦), ( lastS ‘𝑊)} ∈ 𝐸 ↔ {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸))
7874, 77anbi12d 747 . . . . 5 (𝑦 = (𝑊 substr ⟨0, (𝑁 + 1)⟩) → (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {( lastS ‘𝑦), ( lastS ‘𝑊)} ∈ 𝐸) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∧ {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸)))
7978adantl 481 . . . 4 (((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) ∧ 𝑦 = (𝑊 substr ⟨0, (𝑁 + 1)⟩)) → (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {( lastS ‘𝑦), ( lastS ‘𝑊)} ∈ 𝐸) ↔ ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∧ {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸)))
8073, 79rspcedv 3344 . . 3 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (((𝑊 substr ⟨0, (𝑁 + 1)⟩) = (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∧ {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {( lastS ‘𝑦), ( lastS ‘𝑊)} ∈ 𝐸)))
811, 71, 80mp2and 715 . 2 ((𝑁 ∈ ℕ0𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {( lastS ‘𝑦), ( lastS ‘𝑊)} ∈ 𝐸))
8281ex 449 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑦 ∧ {( lastS ‘𝑦), ( lastS ‘𝑊)} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  {cpr 4212  cop 4216   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cmin 10304  cn 11058  0cn0 11330  ...cfz 12364  ..^cfzo 12504  #chash 13157  Word cword 13323   lastS clsw 13324   substr csubstr 13327  Vtxcvtx 25919  Edgcedg 25984   WWalksN cwwlksn 26774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-lsw 13332  df-substr 13335  df-wwlks 26778  df-wwlksn 26779
This theorem is referenced by:  wwlksnredwwlkn0  26859
  Copyright terms: Public domain W3C validator