MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnfi Structured version   Visualization version   GIF version

Theorem wwlksnfi 27050
Description: The number of walks represented by words of fixed length is finite if the number of vertices is finite (in the graph). (Contributed by Alexander van der Vekens, 30-Jul-2018.) (Revised by AV, 19-Apr-2021.)
Assertion
Ref Expression
wwlksnfi ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)

Proof of Theorem wwlksnfi
Dummy variables 𝑖 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wwlksn 26965 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)})
2 df-rab 3070 . . . . . . . 8 {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} = {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))}
31, 2syl6eq 2821 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 WWalksN 𝐺) = {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))})
43adantl 467 . . . . . 6 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) = {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))})
5 eqid 2771 . . . . . . . . . . 11 (Vtx‘𝐺) = (Vtx‘𝐺)
6 eqid 2771 . . . . . . . . . . 11 (Edg‘𝐺) = (Edg‘𝐺)
75, 6iswwlks 26964 . . . . . . . . . 10 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
87a1i 11 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
98anbi1d 615 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))))
109abbidv 2890 . . . . . . 7 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))})
11 3anan12 1081 . . . . . . . . . . 11 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
1211anbi1i 610 . . . . . . . . . 10 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (♯‘𝑤) = (𝑁 + 1)))
13 anass 459 . . . . . . . . . 10 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))))
1412, 13bitri 264 . . . . . . . . 9 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))))
1514abbii 2888 . . . . . . . 8 {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))}
16 df-rab 3070 . . . . . . . 8 {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∣ (𝑤 ∈ Word (Vtx‘𝐺) ∧ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)))}
1715, 16eqtr4i 2796 . . . . . . 7 {𝑤 ∣ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))}
1810, 17syl6eq 2821 . . . . . 6 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → {𝑤 ∣ (𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))})
194, 18eqtrd 2805 . . . . 5 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))})
2019adantr 466 . . . 4 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ (Vtx‘𝐺) ∈ Fin) → (𝑁 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))})
21 peano2nn0 11535 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2221adantl 467 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℕ0)
2322anim2i 603 . . . . . . 7 (((Vtx‘𝐺) ∈ Fin ∧ (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)) → ((Vtx‘𝐺) ∈ Fin ∧ (𝑁 + 1) ∈ ℕ0))
2423ancoms 455 . . . . . 6 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ (Vtx‘𝐺) ∈ Fin) → ((Vtx‘𝐺) ∈ Fin ∧ (𝑁 + 1) ∈ ℕ0))
25 wrdnfi 13534 . . . . . 6 (((Vtx‘𝐺) ∈ Fin ∧ (𝑁 + 1) ∈ ℕ0) → {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ∈ Fin)
2624, 25syl 17 . . . . 5 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ (Vtx‘𝐺) ∈ Fin) → {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ∈ Fin)
27 simpr 471 . . . . . . 7 (((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) → (♯‘𝑤) = (𝑁 + 1))
2827rgenw 3073 . . . . . 6 𝑤 ∈ Word (Vtx‘𝐺)(((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) → (♯‘𝑤) = (𝑁 + 1))
29 ss2rab 3827 . . . . . 6 ({𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ↔ ∀𝑤 ∈ Word (Vtx‘𝐺)(((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1)) → (♯‘𝑤) = (𝑁 + 1)))
3028, 29mpbir 221 . . . . 5 {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}
31 ssfi 8336 . . . . 5 (({𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)} ∈ Fin ∧ {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ⊆ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = (𝑁 + 1)}) → {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ∈ Fin)
3226, 30, 31sylancl 574 . . . 4 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ (Vtx‘𝐺) ∈ Fin) → {𝑤 ∈ Word (Vtx‘𝐺) ∣ ((𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = (𝑁 + 1))} ∈ Fin)
3320, 32eqeltrd 2850 . . 3 (((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) ∧ (Vtx‘𝐺) ∈ Fin) → (𝑁 WWalksN 𝐺) ∈ Fin)
3433ex 397 . 2 ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin))
35 wwlksnndef 27049 . . . . 5 ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ0) → (𝑁 WWalksN 𝐺) = ∅)
36 ioran 968 . . . . . 6 (¬ (𝐺 ∉ V ∨ 𝑁 ∉ ℕ0) ↔ (¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0))
37 nnel 3055 . . . . . . 7 𝐺 ∉ V ↔ 𝐺 ∈ V)
38 nnel 3055 . . . . . . 7 𝑁 ∉ ℕ0𝑁 ∈ ℕ0)
3937, 38anbi12i 612 . . . . . 6 ((¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0) ↔ (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0))
4036, 39sylbb 209 . . . . 5 (¬ (𝐺 ∉ V ∨ 𝑁 ∉ ℕ0) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0))
4135, 40nsyl4 157 . . . 4 (¬ (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) = ∅)
42 0fin 8344 . . . . 5 ∅ ∈ Fin
4342a1i 11 . . . 4 (¬ (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ∅ ∈ Fin)
4441, 43eqeltrd 2850 . . 3 (¬ (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) ∈ Fin)
4544a1d 25 . 2 (¬ (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin))
4634, 45pm2.61i 176 1 ((Vtx‘𝐺) ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  {cab 2757  wne 2943  wnel 3046  wral 3061  {crab 3065  Vcvv 3351  wss 3723  c0 4063  {cpr 4318  cfv 6031  (class class class)co 6793  Fincfn 8109  0cc0 10138  1c1 10139   + caddc 10141  cmin 10468  0cn0 11494  ..^cfzo 12673  chash 13321  Word cword 13487  Vtxcvtx 26095  Edgcedg 26160  WWalkscwwlks 26953   WWalksN cwwlksn 26954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-word 13495  df-wwlks 26958  df-wwlksn 26959
This theorem is referenced by:  wlksnfi  27051  hashwwlksnext  27059  wspthnfi  27066  wwlksnonfi  27067  rusgrnumwwlks  27123  clwwlknclwwlkdifnum  27128  clwwlknclwwlkdifnumOLD  27130
  Copyright terms: Public domain W3C validator