Step | Hyp | Ref
| Expression |
1 | | peano2nn0 11371 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
2 | | iswwlksn 26786 |
. . . . . . . . . . . 12
⊢ ((𝑁 + 1) ∈ ℕ0
→ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)))) |
3 | 1, 2 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)))) |
4 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . 19
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
5 | 4 | wwlkbp 26789 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑊 ∈ (WWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑊 ∈ Word (Vtx‘𝐺))) |
6 | | lencl 13356 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (#‘𝑊) ∈
ℕ0) |
7 | | eqcom 2658 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((#‘𝑊) =
((𝑁 + 1) + 1) ↔
((𝑁 + 1) + 1) =
(#‘𝑊)) |
8 | | nn0cn 11340 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((#‘𝑊) ∈
ℕ0 → (#‘𝑊) ∈ ℂ) |
9 | 8 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((#‘𝑊) ∈
ℕ0 ∧ 𝑁
∈ ℕ0) → (#‘𝑊) ∈ ℂ) |
10 | | 1cnd 10094 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((#‘𝑊) ∈
ℕ0 ∧ 𝑁
∈ ℕ0) → 1 ∈ ℂ) |
11 | | nn0cn 11340 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑁 + 1) ∈ ℕ0
→ (𝑁 + 1) ∈
ℂ) |
12 | 1, 11 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℂ) |
13 | 12 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((#‘𝑊) ∈
ℕ0 ∧ 𝑁
∈ ℕ0) → (𝑁 + 1) ∈ ℂ) |
14 | | subadd2 10323 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((#‘𝑊) ∈
ℂ ∧ 1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) →
(((#‘𝑊) − 1) =
(𝑁 + 1) ↔ ((𝑁 + 1) + 1) = (#‘𝑊))) |
15 | 14 | bicomd 213 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((#‘𝑊) ∈
ℂ ∧ 1 ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) → (((𝑁 + 1) + 1) = (#‘𝑊) ↔ ((#‘𝑊) − 1) = (𝑁 + 1))) |
16 | 9, 10, 13, 15 | syl3anc 1366 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((#‘𝑊) ∈
ℕ0 ∧ 𝑁
∈ ℕ0) → (((𝑁 + 1) + 1) = (#‘𝑊) ↔ ((#‘𝑊) − 1) = (𝑁 + 1))) |
17 | 7, 16 | syl5bb 272 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((#‘𝑊) ∈
ℕ0 ∧ 𝑁
∈ ℕ0) → ((#‘𝑊) = ((𝑁 + 1) + 1) ↔ ((#‘𝑊) − 1) = (𝑁 + 1))) |
18 | | eqcom 2658 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((#‘𝑊)
− 1) = (𝑁 + 1) ↔
(𝑁 + 1) = ((#‘𝑊) − 1)) |
19 | 18 | biimpi 206 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((#‘𝑊)
− 1) = (𝑁 + 1) →
(𝑁 + 1) = ((#‘𝑊) − 1)) |
20 | 17, 19 | syl6bi 243 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((#‘𝑊) ∈
ℕ0 ∧ 𝑁
∈ ℕ0) → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) = ((#‘𝑊) − 1))) |
21 | 20 | ex 449 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((#‘𝑊) ∈
ℕ0 → (𝑁 ∈ ℕ0 →
((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) = ((#‘𝑊) − 1)))) |
22 | 21 | com23 86 |
. . . . . . . . . . . . . . . . . . 19
⊢
((#‘𝑊) ∈
ℕ0 → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((#‘𝑊) − 1)))) |
23 | 6, 22 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((#‘𝑊) − 1)))) |
24 | 5, 23 | simpl2im 657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ (WWalks‘𝐺) → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((#‘𝑊) − 1)))) |
25 | 24 | imp 444 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑁 + 1) = ((#‘𝑊) − 1))) |
26 | 25 | imp 444 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) = ((#‘𝑊) − 1)) |
27 | 26 | opeq2d 4440 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 〈0,
(𝑁 + 1)〉 = 〈0,
((#‘𝑊) −
1)〉) |
28 | 27 | oveq2d 6706 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 substr 〈0, (𝑁 + 1)〉) = (𝑊 substr 〈0, ((#‘𝑊) −
1)〉)) |
29 | | simpll 805 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ (WWalks‘𝐺)) |
30 | | nn0ge0 11356 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ 0 ≤ 𝑁) |
31 | | 2re 11128 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ∈
ℝ |
32 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 2 ∈ ℝ) |
33 | | nn0re 11339 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
34 | 32, 33 | addge02d 10654 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ (0 ≤ 𝑁 ↔ 2
≤ (𝑁 +
2))) |
35 | 30, 34 | mpbid 222 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ 2 ≤ (𝑁 +
2)) |
36 | | nn0cn 11340 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
37 | | 1cnd 10094 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℂ) |
38 | 36, 37, 37 | addassd 10100 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) + 1) =
(𝑁 + (1 +
1))) |
39 | | 1p1e2 11172 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1 + 1) =
2 |
40 | 39 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ (1 + 1) = 2) |
41 | 40 | oveq2d 6706 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + (1 + 1)) =
(𝑁 + 2)) |
42 | 38, 41 | eqtrd 2685 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) + 1) =
(𝑁 + 2)) |
43 | 35, 42 | breqtrrd 4713 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ 2 ≤ ((𝑁 + 1) +
1)) |
44 | 43 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 2 ≤
((𝑁 + 1) +
1)) |
45 | | breq2 4689 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝑊) =
((𝑁 + 1) + 1) → (2
≤ (#‘𝑊) ↔ 2
≤ ((𝑁 + 1) +
1))) |
46 | 45 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (2 ≤
(#‘𝑊) ↔ 2 ≤
((𝑁 + 1) +
1))) |
47 | 44, 46 | mpbird 247 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 2 ≤
(#‘𝑊)) |
48 | 29, 47 | jca 553 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ (WWalks‘𝐺) ∧ 2 ≤ (#‘𝑊))) |
49 | | wwlksm1edg 26835 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ (WWalks‘𝐺) ∧ 2 ≤ (#‘𝑊)) → (𝑊 substr 〈0, ((#‘𝑊) − 1)〉) ∈
(WWalks‘𝐺)) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 substr 〈0, ((#‘𝑊) − 1)〉) ∈
(WWalks‘𝐺)) |
51 | 28, 50 | eqeltrd 2730 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ (WWalks‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈
(WWalks‘𝐺)) |
52 | 51 | expcom 450 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ ((𝑊 ∈
(WWalks‘𝐺) ∧
(#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈
(WWalks‘𝐺))) |
53 | 3, 52 | sylbid 230 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (WWalks‘𝐺))) |
54 | 53 | com12 32 |
. . . . . . . . 9
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈
(WWalks‘𝐺))) |
55 | 54 | adantr 480 |
. . . . . . . 8
⊢ ((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) → (𝑁 ∈ ℕ0 → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈
(WWalks‘𝐺))) |
56 | 55 | imp 444 |
. . . . . . 7
⊢ (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈
(WWalks‘𝐺)) |
57 | | wwlksnextprop.e |
. . . . . . . . . . . 12
⊢ 𝐸 = (Edg‘𝐺) |
58 | 4, 57 | wwlknp 26791 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
59 | | simpll 805 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺)) |
60 | | peano2nn0 11371 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 + 1) ∈ ℕ0
→ ((𝑁 + 1) + 1) ∈
ℕ0) |
61 | 1, 60 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) + 1) ∈
ℕ0) |
62 | | peano2re 10247 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℝ) |
63 | 33, 62 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℝ) |
64 | 63 | lep1d 10993 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)) |
65 | | elfz2nn0 12469 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 + 1) ∈ (0...((𝑁 + 1) + 1)) ↔ ((𝑁 + 1) ∈ ℕ0
∧ ((𝑁 + 1) + 1) ∈
ℕ0 ∧ (𝑁 + 1) ≤ ((𝑁 + 1) + 1))) |
66 | 1, 61, 64, 65 | syl3anbrc 1265 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
(0...((𝑁 + 1) +
1))) |
67 | 66 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢
(((#‘𝑊) =
((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)
→ (𝑁 + 1) ∈
(0...((𝑁 + 1) +
1))) |
68 | | oveq2 6698 |
. . . . . . . . . . . . . . . . 17
⊢
((#‘𝑊) =
((𝑁 + 1) + 1) →
(0...(#‘𝑊)) =
(0...((𝑁 + 1) +
1))) |
69 | 68 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢
(((#‘𝑊) =
((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)
→ (0...(#‘𝑊)) =
(0...((𝑁 + 1) +
1))) |
70 | 67, 69 | eleqtrrd 2733 |
. . . . . . . . . . . . . . 15
⊢
(((#‘𝑊) =
((𝑁 + 1) + 1) ∧ 𝑁 ∈ ℕ0)
→ (𝑁 + 1) ∈
(0...(#‘𝑊))) |
71 | 70 | adantll 750 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (0...(#‘𝑊))) |
72 | 59, 71 | jca 553 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊)))) |
73 | 72 | ex 449 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))))) |
74 | 73 | 3adant3 1101 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))))) |
75 | 58, 74 | syl 17 |
. . . . . . . . . 10
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))))) |
76 | 75 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) → (𝑁 ∈ ℕ0 → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))))) |
77 | 76 | imp 444 |
. . . . . . . 8
⊢ (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊)))) |
78 | | swrd0len 13467 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (0...(#‘𝑊))) → (#‘(𝑊 substr 〈0, (𝑁 + 1)〉)) = (𝑁 + 1)) |
79 | 77, 78 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) →
(#‘(𝑊 substr 〈0,
(𝑁 + 1)〉)) = (𝑁 + 1)) |
80 | 56, 79 | jca 553 |
. . . . . 6
⊢ (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → ((𝑊 substr 〈0, (𝑁 + 1)〉) ∈
(WWalks‘𝐺) ∧
(#‘(𝑊 substr 〈0,
(𝑁 + 1)〉)) = (𝑁 + 1))) |
81 | | iswwlksn 26786 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ ((𝑊 substr 〈0,
(𝑁 + 1)〉) ∈
(𝑁 WWalksN 𝐺) ↔ ((𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (WWalks‘𝐺) ∧ (#‘(𝑊 substr 〈0, (𝑁 + 1)〉)) = (𝑁 + 1)))) |
82 | 81 | adantl 481 |
. . . . . 6
⊢ (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → ((𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (𝑁 WWalksN 𝐺) ↔ ((𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (WWalks‘𝐺) ∧ (#‘(𝑊 substr 〈0, (𝑁 + 1)〉)) = (𝑁 + 1)))) |
83 | 80, 82 | mpbird 247 |
. . . . 5
⊢ (((𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ∧ (𝑊‘0) = 𝑃) ∧ 𝑁 ∈ ℕ0) → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (𝑁 WWalksN 𝐺)) |
84 | 83 | exp31 629 |
. . . 4
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑊‘0) = 𝑃 → (𝑁 ∈ ℕ0 → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (𝑁 WWalksN 𝐺)))) |
85 | | wwlksnextprop.x |
. . . 4
⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) |
86 | 84, 85 | eleq2s 2748 |
. . 3
⊢ (𝑊 ∈ 𝑋 → ((𝑊‘0) = 𝑃 → (𝑁 ∈ ℕ0 → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (𝑁 WWalksN 𝐺)))) |
87 | 86 | 3imp 1275 |
. 2
⊢ ((𝑊 ∈ 𝑋 ∧ (𝑊‘0) = 𝑃 ∧ 𝑁 ∈ ℕ0) → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (𝑁 WWalksN 𝐺)) |
88 | 85 | wwlksnextproplem1 26872 |
. . . 4
⊢ ((𝑊 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) → ((𝑊 substr 〈0, (𝑁 + 1)〉)‘0) = (𝑊‘0)) |
89 | 88 | 3adant2 1100 |
. . 3
⊢ ((𝑊 ∈ 𝑋 ∧ (𝑊‘0) = 𝑃 ∧ 𝑁 ∈ ℕ0) → ((𝑊 substr 〈0, (𝑁 + 1)〉)‘0) = (𝑊‘0)) |
90 | | simp2 1082 |
. . 3
⊢ ((𝑊 ∈ 𝑋 ∧ (𝑊‘0) = 𝑃 ∧ 𝑁 ∈ ℕ0) → (𝑊‘0) = 𝑃) |
91 | 89, 90 | eqtrd 2685 |
. 2
⊢ ((𝑊 ∈ 𝑋 ∧ (𝑊‘0) = 𝑃 ∧ 𝑁 ∈ ℕ0) → ((𝑊 substr 〈0, (𝑁 + 1)〉)‘0) = 𝑃) |
92 | | fveq1 6228 |
. . . 4
⊢ (𝑤 = (𝑊 substr 〈0, (𝑁 + 1)〉) → (𝑤‘0) = ((𝑊 substr 〈0, (𝑁 + 1)〉)‘0)) |
93 | 92 | eqeq1d 2653 |
. . 3
⊢ (𝑤 = (𝑊 substr 〈0, (𝑁 + 1)〉) → ((𝑤‘0) = 𝑃 ↔ ((𝑊 substr 〈0, (𝑁 + 1)〉)‘0) = 𝑃)) |
94 | | wwlksnextprop.y |
. . 3
⊢ 𝑌 = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} |
95 | 93, 94 | elrab2 3399 |
. 2
⊢ ((𝑊 substr 〈0, (𝑁 + 1)〉) ∈ 𝑌 ↔ ((𝑊 substr 〈0, (𝑁 + 1)〉) ∈ (𝑁 WWalksN 𝐺) ∧ ((𝑊 substr 〈0, (𝑁 + 1)〉)‘0) = 𝑃)) |
96 | 87, 91, 95 | sylanbrc 699 |
1
⊢ ((𝑊 ∈ 𝑋 ∧ (𝑊‘0) = 𝑃 ∧ 𝑁 ∈ ℕ0) → (𝑊 substr 〈0, (𝑁 + 1)〉) ∈ 𝑌) |