Step | Hyp | Ref
| Expression |
1 | | eqid 2760 |
. . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
2 | | wwlksnextprop.e |
. . . . 5
⊢ 𝐸 = (Edg‘𝐺) |
3 | 1, 2 | wwlknp 26946 |
. . . 4
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)) |
4 | | fzonn0p1 12739 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈ (0..^(𝑁 + 1))) |
5 | 4 | adantl 473 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (0..^(𝑁 + 1))) |
6 | | fveq2 6352 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑁 → (𝑊‘𝑖) = (𝑊‘𝑁)) |
7 | | oveq1 6820 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑁 → (𝑖 + 1) = (𝑁 + 1)) |
8 | 7 | fveq2d 6356 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑁 → (𝑊‘(𝑖 + 1)) = (𝑊‘(𝑁 + 1))) |
9 | 6, 8 | preq12d 4420 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑁 → {(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))}) |
10 | 9 | eleq1d 2824 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑁 → ({(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
11 | 10 | rspcv 3445 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
12 | 5, 11 | syl 17 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
13 | 12 | imp 444 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸) |
14 | | simpll 807 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺)) |
15 | | 1zzd 11600 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 1 ∈
ℤ) |
16 | | lencl 13510 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈
ℕ0) |
17 | 16 | nn0zd 11672 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (♯‘𝑊) ∈
ℤ) |
18 | 17 | ad2antrr 764 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(♯‘𝑊) ∈
ℤ) |
19 | | peano2nn0 11525 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
20 | 19 | nn0zd 11672 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℤ) |
21 | 20 | adantl 473 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈
ℤ) |
22 | 15, 18, 21 | 3jca 1123 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (1
∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ)) |
23 | | nn0ge0 11510 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ 0 ≤ 𝑁) |
24 | | 1red 10247 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℝ) |
25 | | nn0re 11493 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
26 | 24, 25 | addge02d 10808 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (0 ≤ 𝑁 ↔ 1
≤ (𝑁 +
1))) |
27 | 23, 26 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ 1 ≤ (𝑁 +
1)) |
28 | 27 | adantl 473 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 1 ≤
(𝑁 + 1)) |
29 | 19 | nn0red 11544 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℝ) |
30 | 29 | lep1d 11147 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)) |
31 | | breq2 4808 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝑊) =
((𝑁 + 1) + 1) →
((𝑁 + 1) ≤
(♯‘𝑊) ↔
(𝑁 + 1) ≤ ((𝑁 + 1) + 1))) |
32 | 30, 31 | syl5ibrcom 237 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ ((♯‘𝑊) =
((𝑁 + 1) + 1) → (𝑁 + 1) ≤ (♯‘𝑊))) |
33 | 32 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝑊)
∈ ℕ0 → (𝑁 ∈ ℕ0 →
((♯‘𝑊) =
((𝑁 + 1) + 1) → (𝑁 + 1) ≤ (♯‘𝑊)))) |
34 | 33 | com23 86 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝑊)
∈ ℕ0 → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ (♯‘𝑊)))) |
35 | 16, 34 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ (♯‘𝑊)))) |
36 | 35 | imp31 447 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (♯‘𝑊)) |
37 | 28, 36 | jca 555 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (1 ≤
(𝑁 + 1) ∧ (𝑁 + 1) ≤ (♯‘𝑊))) |
38 | | elfz2 12526 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 + 1) ∈
(1...(♯‘𝑊))
↔ ((1 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (1 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ (♯‘𝑊)))) |
39 | 22, 37, 38 | sylanbrc 701 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈
(1...(♯‘𝑊))) |
40 | 14, 39 | jca 555 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊)))) |
41 | | swrd0fvlsw 13643 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 substr 〈0, (𝑁 + 1)〉)) = (𝑊‘((𝑁 + 1) − 1))) |
42 | 40, 41 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)) =
(𝑊‘((𝑁 + 1) −
1))) |
43 | | nn0cn 11494 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
44 | | 1cnd 10248 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℂ) |
45 | 43, 44 | pncand 10585 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1) − 1)
= 𝑁) |
46 | 45 | fveq2d 6356 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (𝑊‘((𝑁 + 1) − 1)) = (𝑊‘𝑁)) |
47 | 46 | adantl 473 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊‘((𝑁 + 1) − 1)) = (𝑊‘𝑁)) |
48 | 42, 47 | eqtrd 2794 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)) =
(𝑊‘𝑁)) |
49 | | lsw 13538 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word (Vtx‘𝐺) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
50 | 49 | ad2antrr 764 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
51 | | oveq1 6820 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑊) =
((𝑁 + 1) + 1) →
((♯‘𝑊) −
1) = (((𝑁 + 1) + 1) −
1)) |
52 | 51 | fveq2d 6356 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝑊) =
((𝑁 + 1) + 1) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1))) |
53 | 52 | adantl 473 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1))) |
54 | 19 | nn0cnd 11545 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℂ) |
55 | 54, 44 | pncand 10585 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ0
→ (((𝑁 + 1) + 1)
− 1) = (𝑁 +
1)) |
56 | 55 | fveq2d 6356 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ (𝑊‘(((𝑁 + 1) + 1) − 1)) = (𝑊‘(𝑁 + 1))) |
57 | 53, 56 | sylan9eq 2814 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 + 1))) |
58 | 50, 57 | eqtrd 2794 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
(lastS‘𝑊) = (𝑊‘(𝑁 + 1))) |
59 | 48, 58 | preq12d 4420 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
{(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} = {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))}) |
60 | 59 | eleq1d 2824 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) →
({(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} ∈
𝐸 ↔ {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
61 | 60 | adantr 472 |
. . . . . . . 8
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ({(lastS‘(𝑊 substr 〈0, (𝑁 + 1)〉)), (lastS‘𝑊)} ∈ 𝐸 ↔ {(𝑊‘𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)) |
62 | 13, 61 | mpbird 247 |
. . . . . . 7
⊢ ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧
∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → {(lastS‘(𝑊 substr 〈0, (𝑁 + 1)〉)), (lastS‘𝑊)} ∈ 𝐸) |
63 | 62 | exp31 631 |
. . . . . 6
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 →
(∀𝑖 ∈
(0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(lastS‘(𝑊 substr 〈0, (𝑁 + 1)〉)), (lastS‘𝑊)} ∈ 𝐸))) |
64 | 63 | com23 86 |
. . . . 5
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (𝑁 ∈ ℕ0 →
{(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} ∈
𝐸))) |
65 | 64 | 3impia 1110 |
. . . 4
⊢ ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊‘𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 →
{(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} ∈
𝐸)) |
66 | 3, 65 | syl 17 |
. . 3
⊢ (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 →
{(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} ∈
𝐸)) |
67 | | wwlksnextprop.x |
. . 3
⊢ 𝑋 = ((𝑁 + 1) WWalksN 𝐺) |
68 | 66, 67 | eleq2s 2857 |
. 2
⊢ (𝑊 ∈ 𝑋 → (𝑁 ∈ ℕ0 →
{(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} ∈
𝐸)) |
69 | 68 | imp 444 |
1
⊢ ((𝑊 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0) →
{(lastS‘(𝑊 substr
〈0, (𝑁 + 1)〉)),
(lastS‘𝑊)} ∈
𝐸) |