![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlksnextbij0 | Structured version Visualization version GIF version |
Description: Lemma for wwlksnextbij 27042. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 18-Apr-2021.) |
Ref | Expression |
---|---|
wwlksnextbij0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
wwlksnextbij0.e | ⊢ 𝐸 = (Edg‘𝐺) |
wwlksnextbij0.d | ⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} |
wwlksnextbij.r | ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} |
wwlksnextbij.f | ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (lastS‘𝑡)) |
Ref | Expression |
---|---|
wwlksnextbij0 | ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐹:𝐷–1-1-onto→𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlksnextbij0.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | wwlknbp 26967 | . . 3 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉)) |
3 | wwlksnextbij0.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
4 | wwlksnextbij0.d | . . . . 5 ⊢ 𝐷 = {𝑤 ∈ Word 𝑉 ∣ ((♯‘𝑤) = (𝑁 + 2) ∧ (𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑊 ∧ {(lastS‘𝑊), (lastS‘𝑤)} ∈ 𝐸)} | |
5 | wwlksnextbij.r | . . . . 5 ⊢ 𝑅 = {𝑛 ∈ 𝑉 ∣ {(lastS‘𝑊), 𝑛} ∈ 𝐸} | |
6 | wwlksnextbij.f | . . . . 5 ⊢ 𝐹 = (𝑡 ∈ 𝐷 ↦ (lastS‘𝑡)) | |
7 | 1, 3, 4, 5, 6 | wwlksnextinj 27039 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝐹:𝐷–1-1→𝑅) |
8 | 7 | 3ad2ant2 1129 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉) → 𝐹:𝐷–1-1→𝑅) |
9 | 2, 8 | syl 17 | . 2 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐹:𝐷–1-1→𝑅) |
10 | 1, 3, 4, 5, 6 | wwlksnextsur 27040 | . 2 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐹:𝐷–onto→𝑅) |
11 | df-f1o 6057 | . 2 ⊢ (𝐹:𝐷–1-1-onto→𝑅 ↔ (𝐹:𝐷–1-1→𝑅 ∧ 𝐹:𝐷–onto→𝑅)) | |
12 | 9, 10, 11 | sylanbrc 701 | 1 ⊢ (𝑊 ∈ (𝑁 WWalksN 𝐺) → 𝐹:𝐷–1-1-onto→𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 {crab 3055 Vcvv 3341 {cpr 4324 〈cop 4328 ↦ cmpt 4882 –1-1→wf1 6047 –onto→wfo 6048 –1-1-onto→wf1o 6049 ‘cfv 6050 (class class class)co 6815 0cc0 10149 1c1 10150 + caddc 10152 2c2 11283 ℕ0cn0 11505 ♯chash 13332 Word cword 13498 lastSclsw 13499 substr csubstr 13502 Vtxcvtx 26095 Edgcedg 26160 WWalksN cwwlksn 26951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-map 8028 df-pm 8029 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-n0 11506 df-xnn0 11577 df-z 11591 df-uz 11901 df-rp 12047 df-fz 12541 df-fzo 12681 df-hash 13333 df-word 13506 df-lsw 13507 df-concat 13508 df-s1 13509 df-substr 13510 df-wwlks 26955 df-wwlksn 26956 |
This theorem is referenced by: wwlksnextbij 27042 |
Copyright terms: Public domain | W3C validator |