Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksn0s Structured version   Visualization version   GIF version

Theorem wwlksn0s 26994
 Description: The set of all walks as words of length 0 is the set of all words of length 1 over the vertices. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 12-Apr-2021.)
Assertion
Ref Expression
wwlksn0s (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}
Distinct variable group:   𝑤,𝐺

Proof of Theorem wwlksn0s
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 0nn0 11508 . 2 0 ∈ ℕ0
2 wwlksn 26964 . . 3 (0 ∈ ℕ0 → (0 WWalksN 𝐺) = {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (0 + 1)})
3 eqid 2770 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘𝐺)
4 eqid 2770 . . . . . . . 8 (Edg‘𝐺) = (Edg‘𝐺)
53, 4iswwlks 26963 . . . . . . 7 (𝑤 ∈ (WWalks‘𝐺) ↔ (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
6 0p1e1 11333 . . . . . . . 8 (0 + 1) = 1
76eqeq2i 2782 . . . . . . 7 ((♯‘𝑤) = (0 + 1) ↔ (♯‘𝑤) = 1)
85, 7anbi12i 604 . . . . . 6 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 1))
9 simp2 1130 . . . . . . . 8 ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
10 vex 3352 . . . . . . . . . . . 12 𝑤 ∈ V
11 0lt1 10751 . . . . . . . . . . . . 13 0 < 1
12 breq2 4788 . . . . . . . . . . . . 13 ((♯‘𝑤) = 1 → (0 < (♯‘𝑤) ↔ 0 < 1))
1311, 12mpbiri 248 . . . . . . . . . . . 12 ((♯‘𝑤) = 1 → 0 < (♯‘𝑤))
14 hashgt0n0 13357 . . . . . . . . . . . 12 ((𝑤 ∈ V ∧ 0 < (♯‘𝑤)) → 𝑤 ≠ ∅)
1510, 13, 14sylancr 567 . . . . . . . . . . 11 ((♯‘𝑤) = 1 → 𝑤 ≠ ∅)
1615adantr 466 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → 𝑤 ≠ ∅)
17 simpr 471 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → 𝑤 ∈ Word (Vtx‘𝐺))
18 ral0 4215 . . . . . . . . . . . 12 𝑖 ∈ ∅ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)
19 oveq1 6799 . . . . . . . . . . . . . . . 16 ((♯‘𝑤) = 1 → ((♯‘𝑤) − 1) = (1 − 1))
20 1m1e0 11290 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
2119, 20syl6eq 2820 . . . . . . . . . . . . . . 15 ((♯‘𝑤) = 1 → ((♯‘𝑤) − 1) = 0)
2221oveq2d 6808 . . . . . . . . . . . . . 14 ((♯‘𝑤) = 1 → (0..^((♯‘𝑤) − 1)) = (0..^0))
23 fzo0 12699 . . . . . . . . . . . . . 14 (0..^0) = ∅
2422, 23syl6eq 2820 . . . . . . . . . . . . 13 ((♯‘𝑤) = 1 → (0..^((♯‘𝑤) − 1)) = ∅)
2524raleqdv 3292 . . . . . . . . . . . 12 ((♯‘𝑤) = 1 → (∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ∅ {(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2618, 25mpbiri 248 . . . . . . . . . . 11 ((♯‘𝑤) = 1 → ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
2726adantr 466 . . . . . . . . . 10 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))
2816, 17, 273jca 1121 . . . . . . . . 9 (((♯‘𝑤) = 1 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2928ex 397 . . . . . . . 8 ((♯‘𝑤) = 1 → (𝑤 ∈ Word (Vtx‘𝐺) → (𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
309, 29impbid2 216 . . . . . . 7 ((♯‘𝑤) = 1 → ((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ 𝑤 ∈ Word (Vtx‘𝐺)))
3130pm5.32ri 557 . . . . . 6 (((𝑤 ≠ ∅ ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (♯‘𝑤) = 1) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))
328, 31bitri 264 . . . . 5 ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))
3332a1i 11 . . . 4 (0 ∈ ℕ0 → ((𝑤 ∈ (WWalks‘𝐺) ∧ (♯‘𝑤) = (0 + 1)) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1)))
3433rabbidva2 3335 . . 3 (0 ∈ ℕ0 → {𝑤 ∈ (WWalks‘𝐺) ∣ (♯‘𝑤) = (0 + 1)} = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1})
352, 34eqtrd 2804 . 2 (0 ∈ ℕ0 → (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1})
361, 35ax-mp 5 1 (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144   ≠ wne 2942  ∀wral 3060  {crab 3064  Vcvv 3349  ∅c0 4061  {cpr 4316   class class class wbr 4784  ‘cfv 6031  (class class class)co 6792  0cc0 10137  1c1 10138   + caddc 10140   < clt 10275   − cmin 10467  ℕ0cn0 11493  ..^cfzo 12672  ♯chash 13320  Word cword 13486  Vtxcvtx 26094  Edgcedg 26159  WWalkscwwlks 26952   WWalksN cwwlksn 26953 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-xnn0 11565  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13494  df-wwlks 26957  df-wwlksn 26958 This theorem is referenced by:  wwlksn0  26996  rusgrnumwwlkb0  27117
 Copyright terms: Public domain W3C validator