![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlks2onv | Structured version Visualization version GIF version |
Description: If a length 3 string represents a walk of length 2, its components are vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Proof shortened by AV, 14-Mar-2022.) |
Ref | Expression |
---|---|
wwlks2onv.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wwlks2onv | ⊢ ((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wwlks2onv.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | wwlksonvtx 26805 | . . 3 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
3 | 2 | adantl 481 | . 2 ⊢ ((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
4 | simprl 809 | . . 3 ⊢ (((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
5 | wwlknon 26808 | . . . . . 6 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) ↔ (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶)) | |
6 | wwlknbp1 26792 | . . . . . . . 8 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) → (2 ∈ ℕ0 ∧ 〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ (#‘〈“𝐴𝐵𝐶”〉) = (2 + 1))) | |
7 | s3fv1 13683 | . . . . . . . . . . . . 13 ⊢ (𝐵 ∈ 𝑈 → (〈“𝐴𝐵𝐶”〉‘1) = 𝐵) | |
8 | 7 | eqcomd 2657 | . . . . . . . . . . . 12 ⊢ (𝐵 ∈ 𝑈 → 𝐵 = (〈“𝐴𝐵𝐶”〉‘1)) |
9 | 8 | adantl 481 | . . . . . . . . . . 11 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ 𝑈) → 𝐵 = (〈“𝐴𝐵𝐶”〉‘1)) |
10 | 1 | eqcomi 2660 | . . . . . . . . . . . . . . . 16 ⊢ (Vtx‘𝐺) = 𝑉 |
11 | 10 | wrdeqi 13360 | . . . . . . . . . . . . . . 15 ⊢ Word (Vtx‘𝐺) = Word 𝑉 |
12 | 11 | eleq2i 2722 | . . . . . . . . . . . . . 14 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ↔ 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑉) |
13 | 12 | biimpi 206 | . . . . . . . . . . . . 13 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) → 〈“𝐴𝐵𝐶”〉 ∈ Word 𝑉) |
14 | 1ex 10073 | . . . . . . . . . . . . . . 15 ⊢ 1 ∈ V | |
15 | 14 | tpid2 4336 | . . . . . . . . . . . . . 14 ⊢ 1 ∈ {0, 1, 2} |
16 | s3len 13685 | . . . . . . . . . . . . . . . 16 ⊢ (#‘〈“𝐴𝐵𝐶”〉) = 3 | |
17 | 16 | oveq2i 6701 | . . . . . . . . . . . . . . 15 ⊢ (0..^(#‘〈“𝐴𝐵𝐶”〉)) = (0..^3) |
18 | fzo0to3tp 12594 | . . . . . . . . . . . . . . 15 ⊢ (0..^3) = {0, 1, 2} | |
19 | 17, 18 | eqtri 2673 | . . . . . . . . . . . . . 14 ⊢ (0..^(#‘〈“𝐴𝐵𝐶”〉)) = {0, 1, 2} |
20 | 15, 19 | eleqtrri 2729 | . . . . . . . . . . . . 13 ⊢ 1 ∈ (0..^(#‘〈“𝐴𝐵𝐶”〉)) |
21 | wrdsymbcl 13350 | . . . . . . . . . . . . 13 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word 𝑉 ∧ 1 ∈ (0..^(#‘〈“𝐴𝐵𝐶”〉))) → (〈“𝐴𝐵𝐶”〉‘1) ∈ 𝑉) | |
22 | 13, 20, 21 | sylancl 695 | . . . . . . . . . . . 12 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) → (〈“𝐴𝐵𝐶”〉‘1) ∈ 𝑉) |
23 | 22 | adantr 480 | . . . . . . . . . . 11 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ 𝑈) → (〈“𝐴𝐵𝐶”〉‘1) ∈ 𝑉) |
24 | 9, 23 | eqeltrd 2730 | . . . . . . . . . 10 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ 𝑈) → 𝐵 ∈ 𝑉) |
25 | 24 | ex 449 | . . . . . . . . 9 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
26 | 25 | 3ad2ant2 1103 | . . . . . . . 8 ⊢ ((2 ∈ ℕ0 ∧ 〈“𝐴𝐵𝐶”〉 ∈ Word (Vtx‘𝐺) ∧ (#‘〈“𝐴𝐵𝐶”〉) = (2 + 1)) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
27 | 6, 26 | syl 17 | . . . . . . 7 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
28 | 27 | 3ad2ant1 1102 | . . . . . 6 ⊢ ((〈“𝐴𝐵𝐶”〉 ∈ (2 WWalksN 𝐺) ∧ (〈“𝐴𝐵𝐶”〉‘0) = 𝐴 ∧ (〈“𝐴𝐵𝐶”〉‘2) = 𝐶) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
29 | 5, 28 | sylbi 207 | . . . . 5 ⊢ (〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶) → (𝐵 ∈ 𝑈 → 𝐵 ∈ 𝑉)) |
30 | 29 | impcom 445 | . . . 4 ⊢ ((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → 𝐵 ∈ 𝑉) |
31 | 30 | adantr 480 | . . 3 ⊢ (((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) |
32 | simprr 811 | . . 3 ⊢ (((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
33 | 4, 31, 32 | 3jca 1261 | . 2 ⊢ (((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
34 | 3, 33 | mpdan 703 | 1 ⊢ ((𝐵 ∈ 𝑈 ∧ 〈“𝐴𝐵𝐶”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐶)) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 {ctp 4214 ‘cfv 5926 (class class class)co 6690 0cc0 9974 1c1 9975 + caddc 9977 2c2 11108 3c3 11109 ℕ0cn0 11330 ..^cfzo 12504 #chash 13157 Word cword 13323 〈“cs3 13633 Vtxcvtx 25919 WWalksN cwwlksn 26774 WWalksNOn cwwlksnon 26775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-concat 13333 df-s1 13334 df-s2 13639 df-s3 13640 df-wwlks 26778 df-wwlksn 26779 df-wwlksnon 26780 |
This theorem is referenced by: frgr2wwlkeqm 27311 |
Copyright terms: Public domain | W3C validator |