![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunstr | Structured version Visualization version GIF version |
Description: Closure of a structure index in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
wunstr.2 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunstr.3 | ⊢ (𝜑 → 𝑆 ∈ 𝑈) |
Ref | Expression |
---|---|
wunstr | ⊢ (𝜑 → (𝐸‘𝑆) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunstr.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunstr.3 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑈) | |
3 | 1, 2 | wunrn 9752 | . . 3 ⊢ (𝜑 → ran 𝑆 ∈ 𝑈) |
4 | 1, 3 | wununi 9729 | . 2 ⊢ (𝜑 → ∪ ran 𝑆 ∈ 𝑈) |
5 | ndxarg.1 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
6 | 5 | strfvss 16086 | . . 3 ⊢ (𝐸‘𝑆) ⊆ ∪ ran 𝑆 |
7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
8 | 1, 4, 7 | wunss 9735 | 1 ⊢ (𝜑 → (𝐸‘𝑆) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ⊆ wss 3721 ∪ cuni 4572 ran crn 5250 ‘cfv 6031 WUnicwun 9723 Slot cslot 16062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fv 6039 df-wun 9725 df-slot 16067 |
This theorem is referenced by: wunress 16147 1strwun 16189 wunfunc 16765 wunnat 16822 catcoppccl 16964 catcfuccl 16965 estrcbasbas 16977 catcxpccl 17054 ringcbasbas 42552 ringcbasbasALTV 42576 |
Copyright terms: Public domain | W3C validator |