![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunress | Structured version Visualization version GIF version |
Description: Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wunress.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunress.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
wunress.3 | ⊢ (𝜑 → 𝑊 ∈ 𝑈) |
Ref | Expression |
---|---|
wunress | ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wunress.3 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝑈) | |
2 | eqid 2770 | . . . . . 6 ⊢ (𝑊 ↾s 𝐴) = (𝑊 ↾s 𝐴) | |
3 | eqid 2770 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | 2, 3 | ressval 16133 | . . . . 5 ⊢ ((𝑊 ∈ 𝑈 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
5 | 1, 4 | sylan 561 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉))) |
6 | wunress.1 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
7 | df-base 16069 | . . . . . . . . 9 ⊢ Base = Slot 1 | |
8 | wunress.2 | . . . . . . . . . 10 ⊢ (𝜑 → ω ∈ 𝑈) | |
9 | 6, 8 | wunndx 16084 | . . . . . . . . 9 ⊢ (𝜑 → ndx ∈ 𝑈) |
10 | 7, 6, 9 | wunstr 16087 | . . . . . . . 8 ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) |
11 | incom 3954 | . . . . . . . . 9 ⊢ (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴) | |
12 | 7, 6, 1 | wunstr 16087 | . . . . . . . . . 10 ⊢ (𝜑 → (Base‘𝑊) ∈ 𝑈) |
13 | 6, 12 | wunin 9736 | . . . . . . . . 9 ⊢ (𝜑 → ((Base‘𝑊) ∩ 𝐴) ∈ 𝑈) |
14 | 11, 13 | syl5eqel 2853 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ 𝑈) |
15 | 6, 10, 14 | wunop 9745 | . . . . . . 7 ⊢ (𝜑 → 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉 ∈ 𝑈) |
16 | 6, 1, 15 | wunsets 16106 | . . . . . 6 ⊢ (𝜑 → (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉) ∈ 𝑈) |
17 | 1, 16 | ifcld 4268 | . . . . 5 ⊢ (𝜑 → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) ∈ 𝑈) |
18 | 17 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Base‘ndx), (𝐴 ∩ (Base‘𝑊))〉)) ∈ 𝑈) |
19 | 5, 18 | eqeltrd 2849 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ V) → (𝑊 ↾s 𝐴) ∈ 𝑈) |
20 | 19 | ex 397 | . 2 ⊢ (𝜑 → (𝐴 ∈ V → (𝑊 ↾s 𝐴) ∈ 𝑈)) |
21 | 6 | wun0 9741 | . . 3 ⊢ (𝜑 → ∅ ∈ 𝑈) |
22 | reldmress 16132 | . . . . 5 ⊢ Rel dom ↾s | |
23 | 22 | ovprc2 6829 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) = ∅) |
24 | 23 | eleq1d 2834 | . . 3 ⊢ (¬ 𝐴 ∈ V → ((𝑊 ↾s 𝐴) ∈ 𝑈 ↔ ∅ ∈ 𝑈)) |
25 | 21, 24 | syl5ibrcom 237 | . 2 ⊢ (𝜑 → (¬ 𝐴 ∈ V → (𝑊 ↾s 𝐴) ∈ 𝑈)) |
26 | 20, 25 | pm2.61d 171 | 1 ⊢ (𝜑 → (𝑊 ↾s 𝐴) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ∩ cin 3720 ⊆ wss 3721 ∅c0 4061 ifcif 4223 〈cop 4320 ‘cfv 6031 (class class class)co 6792 ωcom 7211 WUnicwun 9723 1c1 10138 ndxcnx 16060 sSet csts 16061 Basecbs 16063 ↾s cress 16064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-i2m1 10205 ax-1ne0 10206 ax-rrecex 10209 ax-cnre 10210 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-omul 7717 df-er 7895 df-ec 7897 df-qs 7901 df-map 8010 df-pm 8011 df-wun 9725 df-ni 9895 df-pli 9896 df-mi 9897 df-lti 9898 df-plpq 9931 df-mpq 9932 df-ltpq 9933 df-enq 9934 df-nq 9935 df-erq 9936 df-plq 9937 df-mq 9938 df-1nq 9939 df-rq 9940 df-ltnq 9941 df-np 10004 df-plp 10006 df-ltp 10008 df-enr 10078 df-nr 10079 df-c 10143 df-nn 11222 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |