![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunndx | Structured version Visualization version GIF version |
Description: Closure of the index extractor in an infinite weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.) |
Ref | Expression |
---|---|
wunndx.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunndx.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
Ref | Expression |
---|---|
wunndx | ⊢ (𝜑 → ndx ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 16082 | . 2 ⊢ ndx = ( I ↾ ℕ) | |
2 | wunndx.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | wunndx.2 | . . . . 5 ⊢ (𝜑 → ω ∈ 𝑈) | |
4 | 2, 3 | wuncn 10203 | . . . 4 ⊢ (𝜑 → ℂ ∈ 𝑈) |
5 | nnsscn 11237 | . . . . 5 ⊢ ℕ ⊆ ℂ | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ⊆ ℂ) |
7 | 2, 4, 6 | wunss 9746 | . . 3 ⊢ (𝜑 → ℕ ∈ 𝑈) |
8 | f1oi 6336 | . . . 4 ⊢ ( I ↾ ℕ):ℕ–1-1-onto→ℕ | |
9 | f1of 6299 | . . . 4 ⊢ (( I ↾ ℕ):ℕ–1-1-onto→ℕ → ( I ↾ ℕ):ℕ⟶ℕ) | |
10 | 8, 9 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ ℕ):ℕ⟶ℕ) |
11 | 2, 7, 7, 10 | wunf 9761 | . 2 ⊢ (𝜑 → ( I ↾ ℕ) ∈ 𝑈) |
12 | 1, 11 | syl5eqel 2843 | 1 ⊢ (𝜑 → ndx ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 ⊆ wss 3715 I cid 5173 ↾ cres 5268 ⟶wf 6045 –1-1-onto→wf1o 6048 ωcom 7231 WUnicwun 9734 ℂcc 10146 ℕcn 11232 ndxcnx 16076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-i2m1 10216 ax-1ne0 10217 ax-rrecex 10220 ax-cnre 10221 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-omul 7735 df-er 7913 df-ec 7915 df-qs 7919 df-map 8027 df-pm 8028 df-wun 9736 df-ni 9906 df-pli 9907 df-mi 9908 df-lti 9909 df-plpq 9942 df-mpq 9943 df-ltpq 9944 df-enq 9945 df-nq 9946 df-erq 9947 df-plq 9948 df-mq 9949 df-1nq 9950 df-rq 9951 df-ltnq 9952 df-np 10015 df-plp 10017 df-ltp 10019 df-enr 10089 df-nr 10090 df-c 10154 df-nn 11233 df-ndx 16082 |
This theorem is referenced by: wunress 16162 1strwun 16204 catcoppccl 16979 catcfuccl 16980 catcxpccl 17068 |
Copyright terms: Public domain | W3C validator |