![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wunf | Structured version Visualization version GIF version |
Description: A weak universe is closed under functions with known domain and codomain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
wunop.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
wunf.3 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
wunf | ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
3 | wunop.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 1, 2, 3 | wunmap 9750 | . . 3 ⊢ (𝜑 → (𝐵 ↑𝑚 𝐴) ∈ 𝑈) |
5 | 1, 4 | wunelss 9732 | . 2 ⊢ (𝜑 → (𝐵 ↑𝑚 𝐴) ⊆ 𝑈) |
6 | wunf.3 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
7 | 2, 3 | elmapd 8023 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑𝑚 𝐴) ↔ 𝐹:𝐴⟶𝐵)) |
8 | 6, 7 | mpbird 247 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑𝑚 𝐴)) |
9 | 5, 8 | sseldd 3753 | 1 ⊢ (𝜑 → 𝐹 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ⟶wf 6027 (class class class)co 6793 ↑𝑚 cmap 8009 WUnicwun 9724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-map 8011 df-pm 8012 df-wun 9726 |
This theorem is referenced by: wunndx 16085 wunnat 16823 catcoppccl 16965 catcfuccl 16966 catcxpccl 17055 |
Copyright terms: Public domain | W3C validator |