![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wundm | Structured version Visualization version GIF version |
Description: A weak universe is closed under the domain operator. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wun0.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wunop.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
Ref | Expression |
---|---|
wundm | ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wun0.1 | . 2 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
2 | wunop.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
3 | 1, 2 | wununi 9741 | . . 3 ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) |
4 | 1, 3 | wununi 9741 | . 2 ⊢ (𝜑 → ∪ ∪ 𝐴 ∈ 𝑈) |
5 | ssun1 3920 | . . . 4 ⊢ dom 𝐴 ⊆ (dom 𝐴 ∪ ran 𝐴) | |
6 | dmrnssfld 5540 | . . . 4 ⊢ (dom 𝐴 ∪ ran 𝐴) ⊆ ∪ ∪ 𝐴 | |
7 | 5, 6 | sstri 3754 | . . 3 ⊢ dom 𝐴 ⊆ ∪ ∪ 𝐴 |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → dom 𝐴 ⊆ ∪ ∪ 𝐴) |
9 | 1, 4, 8 | wunss 9747 | 1 ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2140 ∪ cun 3714 ⊆ wss 3716 ∪ cuni 4589 dom cdm 5267 ran crn 5268 WUnicwun 9735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-tr 4906 df-cnv 5275 df-dm 5277 df-rn 5278 df-wun 9737 |
This theorem is referenced by: wuncnv 9765 wunco 9768 wuntpos 9769 catcoppccl 16980 |
Copyright terms: Public domain | W3C validator |