![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wuncval | Structured version Visualization version GIF version |
Description: Value of the weak universe closure operator. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wuncval | ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) = ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3316 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | wunex 9674 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑢 ∈ WUni 𝐴 ⊆ 𝑢) | |
3 | rabn0 4066 | . . . 4 ⊢ ({𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ≠ ∅ ↔ ∃𝑢 ∈ WUni 𝐴 ⊆ 𝑢) | |
4 | 2, 3 | sylibr 224 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ≠ ∅) |
5 | intex 4925 | . . 3 ⊢ ({𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ≠ ∅ ↔ ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ∈ V) | |
6 | 4, 5 | sylib 208 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ∈ V) |
7 | sseq1 3732 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑢 ↔ 𝐴 ⊆ 𝑢)) | |
8 | 7 | rabbidv 3293 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢} = {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢}) |
9 | 8 | inteqd 4588 | . . 3 ⊢ (𝑥 = 𝐴 → ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢} = ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢}) |
10 | df-wunc 9638 | . . 3 ⊢ wUniCl = (𝑥 ∈ V ↦ ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢}) | |
11 | 9, 10 | fvmptg 6394 | . 2 ⊢ ((𝐴 ∈ V ∧ ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ∈ V) → (wUniCl‘𝐴) = ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢}) |
12 | 1, 6, 11 | syl2anc 696 | 1 ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) = ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 ∃wrex 3015 {crab 3018 Vcvv 3304 ⊆ wss 3680 ∅c0 4023 ∩ cint 4583 ‘cfv 6001 WUnicwun 9635 wUniClcwunm 9636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-inf2 8651 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-om 7183 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-wun 9637 df-wunc 9638 |
This theorem is referenced by: wuncid 9678 wunccl 9679 wuncss 9680 |
Copyright terms: Public domain | W3C validator |