![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wuncn | Structured version Visualization version GIF version |
Description: A weak universe containing ω contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wuncn.1 | ⊢ (𝜑 → 𝑈 ∈ WUni) |
wuncn.2 | ⊢ (𝜑 → ω ∈ 𝑈) |
Ref | Expression |
---|---|
wuncn | ⊢ (𝜑 → ℂ ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-c 9980 | . 2 ⊢ ℂ = (R × R) | |
2 | wuncn.1 | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
3 | df-nr 9916 | . . . 4 ⊢ R = ((P × P) / ~R ) | |
4 | df-ni 9732 | . . . . . . . . . . . 12 ⊢ N = (ω ∖ {∅}) | |
5 | wuncn.2 | . . . . . . . . . . . . 13 ⊢ (𝜑 → ω ∈ 𝑈) | |
6 | 2, 5 | wundif 9574 | . . . . . . . . . . . 12 ⊢ (𝜑 → (ω ∖ {∅}) ∈ 𝑈) |
7 | 4, 6 | syl5eqel 2734 | . . . . . . . . . . 11 ⊢ (𝜑 → N ∈ 𝑈) |
8 | 2, 7, 7 | wunxp 9584 | . . . . . . . . . 10 ⊢ (𝜑 → (N × N) ∈ 𝑈) |
9 | elpqn 9785 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ Q → 𝑥 ∈ (N × N)) | |
10 | 9 | ssriv 3640 | . . . . . . . . . . 11 ⊢ Q ⊆ (N × N) |
11 | 10 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → Q ⊆ (N × N)) |
12 | 2, 8, 11 | wunss 9572 | . . . . . . . . 9 ⊢ (𝜑 → Q ∈ 𝑈) |
13 | 2, 12 | wunpw 9567 | . . . . . . . 8 ⊢ (𝜑 → 𝒫 Q ∈ 𝑈) |
14 | prpssnq 9850 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ P → 𝑥 ⊊ Q) | |
15 | 14 | pssssd 3737 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ P → 𝑥 ⊆ Q) |
16 | selpw 4198 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ 𝒫 Q ↔ 𝑥 ⊆ Q) | |
17 | 15, 16 | sylibr 224 | . . . . . . . . . 10 ⊢ (𝑥 ∈ P → 𝑥 ∈ 𝒫 Q) |
18 | 17 | ssriv 3640 | . . . . . . . . 9 ⊢ P ⊆ 𝒫 Q |
19 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → P ⊆ 𝒫 Q) |
20 | 2, 13, 19 | wunss 9572 | . . . . . . 7 ⊢ (𝜑 → P ∈ 𝑈) |
21 | 2, 20, 20 | wunxp 9584 | . . . . . 6 ⊢ (𝜑 → (P × P) ∈ 𝑈) |
22 | 2, 21 | wunpw 9567 | . . . . 5 ⊢ (𝜑 → 𝒫 (P × P) ∈ 𝑈) |
23 | enrer 9924 | . . . . . . 7 ⊢ ~R Er (P × P) | |
24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ~R Er (P × P)) |
25 | 24 | qsss 7851 | . . . . 5 ⊢ (𝜑 → ((P × P) / ~R ) ⊆ 𝒫 (P × P)) |
26 | 2, 22, 25 | wunss 9572 | . . . 4 ⊢ (𝜑 → ((P × P) / ~R ) ∈ 𝑈) |
27 | 3, 26 | syl5eqel 2734 | . . 3 ⊢ (𝜑 → R ∈ 𝑈) |
28 | 2, 27, 27 | wunxp 9584 | . 2 ⊢ (𝜑 → (R × R) ∈ 𝑈) |
29 | 1, 28 | syl5eqel 2734 | 1 ⊢ (𝜑 → ℂ ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ∖ cdif 3604 ⊆ wss 3607 ∅c0 3948 𝒫 cpw 4191 {csn 4210 × cxp 5141 ωcom 7107 Er wer 7784 / cqs 7786 WUnicwun 9560 Ncnpi 9704 Qcnq 9712 Pcnp 9719 ~R cer 9724 Rcnr 9725 ℂcc 9972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-omul 7610 df-er 7787 df-ec 7789 df-qs 7793 df-wun 9562 df-ni 9732 df-pli 9733 df-mi 9734 df-lti 9735 df-plpq 9768 df-mpq 9769 df-ltpq 9770 df-enq 9771 df-nq 9772 df-erq 9773 df-plq 9774 df-mq 9775 df-1nq 9776 df-rq 9777 df-ltnq 9778 df-np 9841 df-plp 9843 df-ltp 9845 df-enr 9915 df-nr 9916 df-c 9980 |
This theorem is referenced by: wunndx 15925 |
Copyright terms: Public domain | W3C validator |