MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspthsnonn0vne Structured version   Visualization version   GIF version

Theorem wspthsnonn0vne 26882
Description: If the set of simple paths of length at least 1 between two vertices is not empty, the two vertices must be different. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.)
Assertion
Ref Expression
wspthsnonn0vne ((𝑁 ∈ ℕ ∧ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅) → 𝑋𝑌)

Proof of Theorem wspthsnonn0vne
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3964 . . 3 ((𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌))
2 eqid 2651 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
32wspthnonp 26813 . . . . 5 (𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → ((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺)) ∧ (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝)))
4 wwlknon 26808 . . . . . . . 8 (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ↔ (𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌))
5 iswwlksn 26786 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑝 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑝 ∈ (WWalks‘𝐺) ∧ (#‘𝑝) = (𝑁 + 1))))
6 spthonisspth 26702 . . . . . . . . . . . . . . . . . . 19 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑓(SPaths‘𝐺)𝑝)
7 spthispth 26678 . . . . . . . . . . . . . . . . . . 19 (𝑓(SPaths‘𝐺)𝑝𝑓(Paths‘𝐺)𝑝)
8 pthiswlk 26679 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Paths‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
9 wlklenvm1 26573 . . . . . . . . . . . . . . . . . . . 20 (𝑓(Walks‘𝐺)𝑝 → (#‘𝑓) = ((#‘𝑝) − 1))
108, 9syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑓(Paths‘𝐺)𝑝 → (#‘𝑓) = ((#‘𝑝) − 1))
116, 7, 103syl 18 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (#‘𝑓) = ((#‘𝑝) − 1))
12 oveq1 6697 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑝) = (𝑁 + 1) → ((#‘𝑝) − 1) = ((𝑁 + 1) − 1))
1312eqeq2d 2661 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑝) = (𝑁 + 1) → ((#‘𝑓) = ((#‘𝑝) − 1) ↔ (#‘𝑓) = ((𝑁 + 1) − 1)))
14 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (#‘𝑓) = ((𝑁 + 1) − 1)) → (#‘𝑓) = ((𝑁 + 1) − 1))
15 nncn 11066 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
16 pncan1 10492 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
1715, 16syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
1817adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (#‘𝑓) = ((𝑁 + 1) − 1)) → ((𝑁 + 1) − 1) = 𝑁)
1914, 18eqtrd 2685 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ (#‘𝑓) = ((𝑁 + 1) − 1)) → (#‘𝑓) = 𝑁)
20 nnne0 11091 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
2120adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ (#‘𝑓) = ((𝑁 + 1) − 1)) → 𝑁 ≠ 0)
2219, 21eqnetrd 2890 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ (#‘𝑓) = ((𝑁 + 1) − 1)) → (#‘𝑓) ≠ 0)
23 spthonepeq 26704 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑋 = 𝑌 ↔ (#‘𝑓) = 0))
2423necon3bid 2867 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑋𝑌 ↔ (#‘𝑓) ≠ 0))
2522, 24syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (#‘𝑓) = ((𝑁 + 1) − 1)) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑋𝑌))
2625expcom 450 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑓) = ((𝑁 + 1) − 1) → (𝑁 ∈ ℕ → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝𝑋𝑌)))
2726com23 86 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑓) = ((𝑁 + 1) − 1) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
2813, 27syl6bi 243 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑝) = (𝑁 + 1) → ((#‘𝑓) = ((#‘𝑝) − 1) → (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
2928com13 88 . . . . . . . . . . . . . . . . . 18 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((#‘𝑓) = ((#‘𝑝) − 1) → ((#‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌))))
3011, 29mpd 15 . . . . . . . . . . . . . . . . 17 (𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((#‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌)))
3130exlimiv 1898 . . . . . . . . . . . . . . . 16 (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → ((#‘𝑝) = (𝑁 + 1) → (𝑁 ∈ ℕ → 𝑋𝑌)))
3231com12 32 . . . . . . . . . . . . . . 15 ((#‘𝑝) = (𝑁 + 1) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
3332adantl 481 . . . . . . . . . . . . . 14 ((𝑝 ∈ (WWalks‘𝐺) ∧ (#‘𝑝) = (𝑁 + 1)) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌)))
345, 33syl6bi 243 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3534adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐺 ∈ V) → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3635adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (𝑝 ∈ (𝑁 WWalksN 𝐺) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3736com12 32 . . . . . . . . . 10 (𝑝 ∈ (𝑁 WWalksN 𝐺) → (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
38373ad2ant1 1102 . . . . . . . . 9 ((𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌) → (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
3938com12 32 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → ((𝑝 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑝‘0) = 𝑋 ∧ (𝑝𝑁) = 𝑌) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
404, 39syl5bi 232 . . . . . . 7 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) → (∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝 → (𝑁 ∈ ℕ → 𝑋𝑌))))
4140impd 446 . . . . . 6 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺))) → ((𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝) → (𝑁 ∈ ℕ → 𝑋𝑌)))
42413impia 1280 . . . . 5 (((𝑁 ∈ ℕ0𝐺 ∈ V) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝑌 ∈ (Vtx‘𝐺)) ∧ (𝑝 ∈ (𝑋(𝑁 WWalksNOn 𝐺)𝑌) ∧ ∃𝑓 𝑓(𝑋(SPathsOn‘𝐺)𝑌)𝑝)) → (𝑁 ∈ ℕ → 𝑋𝑌))
433, 42syl 17 . . . 4 (𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → (𝑁 ∈ ℕ → 𝑋𝑌))
4443exlimiv 1898 . . 3 (∃𝑝 𝑝 ∈ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) → (𝑁 ∈ ℕ → 𝑋𝑌))
451, 44sylbi 207 . 2 ((𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅ → (𝑁 ∈ ℕ → 𝑋𝑌))
4645impcom 445 1 ((𝑁 ∈ ℕ ∧ (𝑋(𝑁 WSPathsNOn 𝐺)𝑌) ≠ ∅) → 𝑋𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  Vcvv 3231  c0 3948   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975   + caddc 9977  cmin 10304  cn 11058  0cn0 11330  #chash 13157  Vtxcvtx 25919  Walkscwlks 26548  Pathscpths 26664  SPathscspths 26665  SPathsOncspthson 26667  WWalkscwwlks 26773   WWalksN cwwlksn 26774   WWalksNOn cwwlksnon 26775   WSPathsNOn cwwspthsnon 26777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ifp 1033  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-hash 13158  df-word 13331  df-wlks 26551  df-wlkson 26552  df-trls 26645  df-trlson 26646  df-pths 26668  df-spths 26669  df-spthson 26671  df-wwlks 26778  df-wwlksn 26779  df-wwlksnon 26780  df-wspthsnon 26782
This theorem is referenced by:  wspniunwspnon  26888  usgr2wspthons3  26931
  Copyright terms: Public domain W3C validator