![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wspthnon | Structured version Visualization version GIF version |
Description: An element of the set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 12-May-2021.) (Revised by AV, 15-Mar-2022.) |
Ref | Expression |
---|---|
wspthnon | ⊢ (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4790 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤 ↔ 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)) | |
2 | 1 | exbidv 2002 | . 2 ⊢ (𝑤 = 𝑊 → (∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤 ↔ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)) |
3 | eqid 2771 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
4 | 3 | iswspthsnon 26986 | . 2 ⊢ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) = {𝑤 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∣ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑤} |
5 | 2, 4 | elrab2 3518 | 1 ⊢ (𝑊 ∈ (𝐴(𝑁 WSPathsNOn 𝐺)𝐵) ↔ (𝑊 ∈ (𝐴(𝑁 WWalksNOn 𝐺)𝐵) ∧ ∃𝑓 𝑓(𝐴(SPathsOn‘𝐺)𝐵)𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∃wex 1852 ∈ wcel 2145 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 Vtxcvtx 26095 SPathsOncspthson 26846 WWalksNOn cwwlksnon 26955 WSPathsNOn cwwspthsnon 26957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-wwlksnon 26960 df-wspthsnon 26962 |
This theorem is referenced by: wspthnonp 26993 wspthsnwspthsnon 27061 elwspths2on 27108 elwspths2spth 27116 |
Copyright terms: Public domain | W3C validator |