![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wspn0 | Structured version Visualization version GIF version |
Description: If there are no vertices, then there are no simple paths (of any length), too. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 13-Mar-2022.) |
Ref | Expression |
---|---|
wspn0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wspn0 | ⊢ (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wspthsn 26973 | . 2 ⊢ (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} | |
2 | wwlknbp1 26968 | . . . . . 6 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))) | |
3 | wspn0.v | . . . . . . . . . . . . 13 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | eqeq1i 2765 | . . . . . . . . . . . 12 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
5 | wrdeq 13533 | . . . . . . . . . . . 12 ⊢ ((Vtx‘𝐺) = ∅ → Word (Vtx‘𝐺) = Word ∅) | |
6 | 4, 5 | sylbi 207 | . . . . . . . . . . 11 ⊢ (𝑉 = ∅ → Word (Vtx‘𝐺) = Word ∅) |
7 | 6 | eleq2d 2825 | . . . . . . . . . 10 ⊢ (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word ∅)) |
8 | 0wrd0 13537 | . . . . . . . . . 10 ⊢ (𝑤 ∈ Word ∅ ↔ 𝑤 = ∅) | |
9 | 7, 8 | syl6bb 276 | . . . . . . . . 9 ⊢ (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 = ∅)) |
10 | fveq2 6353 | . . . . . . . . . . . . . . 15 ⊢ (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅)) | |
11 | hash0 13370 | . . . . . . . . . . . . . . 15 ⊢ (♯‘∅) = 0 | |
12 | 10, 11 | syl6eq 2810 | . . . . . . . . . . . . . 14 ⊢ (𝑤 = ∅ → (♯‘𝑤) = 0) |
13 | 12 | eqeq1d 2762 | . . . . . . . . . . . . 13 ⊢ (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1))) |
14 | 13 | adantl 473 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1))) |
15 | nn0p1gt0 11534 | . . . . . . . . . . . . . . 15 ⊢ (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1)) | |
16 | 15 | gt0ne0d 10804 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ≠ 0) |
17 | eqneqall 2943 | . . . . . . . . . . . . . . 15 ⊢ ((𝑁 + 1) = 0 → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) | |
18 | 17 | eqcoms 2768 | . . . . . . . . . . . . . 14 ⊢ (0 = (𝑁 + 1) → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
19 | 16, 18 | syl5com 31 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ0 → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
20 | 19 | adantr 472 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤 = ∅) → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
21 | 14, 20 | sylbid 230 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
22 | 21 | expcom 450 | . . . . . . . . . 10 ⊢ (𝑤 = ∅ → (𝑁 ∈ ℕ0 → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))) |
23 | 22 | com23 86 | . . . . . . . . 9 ⊢ (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))) |
24 | 9, 23 | syl6bi 243 | . . . . . . . 8 ⊢ (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))) |
25 | 24 | com14 96 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))) |
26 | 25 | 3imp 1102 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
27 | 2, 26 | syl 17 | . . . . 5 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
28 | 27 | impcom 445 | . . . 4 ⊢ ((𝑉 = ∅ ∧ 𝑤 ∈ (𝑁 WWalksN 𝐺)) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤) |
29 | 28 | ralrimiva 3104 | . . 3 ⊢ (𝑉 = ∅ → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤) |
30 | rabeq0 4100 | . . 3 ⊢ ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤) | |
31 | 29, 30 | sylibr 224 | . 2 ⊢ (𝑉 = ∅ → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅) |
32 | 1, 31 | syl5eq 2806 | 1 ⊢ (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∃wex 1853 ∈ wcel 2139 ≠ wne 2932 ∀wral 3050 {crab 3054 ∅c0 4058 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 0cc0 10148 1c1 10149 + caddc 10151 ℕ0cn0 11504 ♯chash 13331 Word cword 13497 Vtxcvtx 26094 SPathscspths 26840 WWalksN cwwlksn 26950 WSPathsN cwwspthsn 26952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-er 7913 df-map 8027 df-pm 8028 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-fzo 12680 df-hash 13332 df-word 13505 df-wwlks 26954 df-wwlksn 26955 df-wspthsn 26957 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |