![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrecseq3 | Structured version Visualization version GIF version |
Description: Equality theorem for the well-founded recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) |
Ref | Expression |
---|---|
wrecseq3 | ⊢ (𝐹 = 𝐺 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐴, 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2769 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2769 | . 2 ⊢ 𝐴 = 𝐴 | |
3 | wrecseq123 7558 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐴 ∧ 𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐴, 𝐺)) | |
4 | 1, 2, 3 | mp3an12 1560 | 1 ⊢ (𝐹 = 𝐺 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐴, 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1629 wrecscwrecs 7556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ral 3064 df-rex 3065 df-rab 3068 df-v 3350 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-nul 4061 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4572 df-br 4784 df-opab 4844 df-xp 5254 df-cnv 5256 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-iota 5993 df-fv 6038 df-wrecs 7557 |
This theorem is referenced by: recseq 7621 bpolylem 14990 |
Copyright terms: Public domain | W3C validator |